Abstract

Pure inorganic perovskite of CsPbI3 attracts great attentions due to its excellent thermal stability and more suitable bandgap for tandem solar cells. The power conversion efficiency (PCE) of CsPbI3 perovskite solar cells has swiftly increased to 19.03%. However, extensive researches on the material property and photovoltaic characterization are rather rare in the literatures. In this study, a remarkable light soaking effect is found in the CsPbI3 based perovskite solar cells as the PCE increases from 10.8% to 18.3% after 180 s soaking under AM 1.5G sunlight. Mechanisms behind this reproducible soaking effect have also been studied. It reveals that the depressed dark current caused by a stronger built-in field and the decreased defects density passivated by the photogenerated electrons result in the enhanced PCE after light soaking. Moreover, we carefully characterize that the supposed "HPbI3" should be "DMAPbI(3)" synthesized through anti-solvent vapor recrystallisation method.

Details