Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Co (CoO)1– catalyst for CO2 hydrogenation
 
research article

Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Co (CoO)1– catalyst for CO2 hydrogenation

Zhao, Kun  
•
Calizzi, Marco  
•
Moioli, Emanuele  
Show more
May 19, 2020
Journal of Energy Chemistry

The relation between catalytic reactivities and metal/metal oxide ratios, as well as the functions of the metal and the metal oxides were investigated in the CO2 hydrogenation reaction over highly active Cox(CoO)1–x catalysts in operando. The catalytic reactivity of the samples in the CO2 methanation improves with the increased CoO concentration. Strikingly, the sample with the highest concentration of CoO, i.e., Co0.2(CoO)0.8, shows activity at temperatures lower than 200 °C where the other samples with less CoO are inactive. The origins of this improvement are the increased amount and moderate binding of adsorbed CO2 on CoO sites. The derivative adsorption species are found to be intermediates of the CH4 formation. The metallic Co functions as the electronically catalytic site which provides electrons for the hydrogenation steps. As a result, an abundant amount of CoO combined with Co is the optimal composition of the catalyst for achieving the highest reactivity for CO2 hydrogenation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S209549562030351X-main.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.69 MB

Format

Adobe PDF

Checksum (MD5)

55acd44f9704d1e8c14ea13436451d77

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés