Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Microstructural controls of anticrack nucleation in highly porous brittle solids
 
research article

Microstructural controls of anticrack nucleation in highly porous brittle solids

Ritter, Jonas
•
Lowe, Henning
•
Gaume, Johan  
July 24, 2020
Scientific Reports

Porous brittle solids have the ability to collapse and fail even under compressive stresses. In fracture mechanics, this singular behavior, often referred to as anticrack, demands for appropriate continuum models to predict the catastrophic failure. To identify universal controls of anticracks, we link the microstructure of a porous solid with its yield surface at the onset of plastic flow. We utilize an assembly method for porous structures, which allows to independently vary microstructural properties (density and coordination number) and perform discrete element simulations under mixed-mode (shear-compression) loading. In rescaled stress coordinates, the concurrent influence of the microstructural properties can be cast into a universal, ellipsoidal form of the yield surface that reveals an associative plastic flow rule, as a common feature of these materials. Our results constitute a constructive approach for continuum modeling of anticrack nucleation and propagation in highly porous brittle, engineering and geo-materials.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41598-020-67926-2.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.59 MB

Format

Adobe PDF

Checksum (MD5)

e907b16a8f14c5034577f533295db1eb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés