Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Far-Field Subwavelength Acoustic Imaging by Deep Learning
 
research article

Far-Field Subwavelength Acoustic Imaging by Deep Learning

Orazbayev, Bakhtiyar  
•
Fleury, Romain  
August 7, 2020
Physical Review X

Seeing and recognizing an object whose size is much smaller than the illumination wavelength is a challenging task for an observer placed in the far field, due to the diffraction limit. Recent advances in near- and far-field microscopy have offered several ways to overcome this limitation; however, they often use invasive markers and require intricate equipment with complicated image postprocessing. On the other hand, a simple marker-free solution for high-resolution imaging may be found by exploiting resonant metamaterial lenses that can convert the subwavelength image information contained in the near field of the object to propagating field components that can reach the far field. Unfortunately, resonant metalenses are inevitably sensitive to absorption losses, which has so far largely hindered their practical applications. Here, we solve this vexing problem and show that this limitation can be turned into an advantage when metalenses are combined with deep learning techniques. We demonstrate that combining deep learning with lossy metalenses allows recognizing and imaging largely subwavelength features directly from the far field. Our acoustic learning experiment shows that, despite being 30 times smaller than the wavelength of sound, the fine details of images can be successfully reconstructed and recognized in the far field, which is crucially favored by the presence of absorption. We envision applications in acoustic image analysis, feature detection, object classification, or as a novel noninvasive acoustic sensing tool in biomedical applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevX.10.031029.pdf

Access type

openaccess

License Condition

CC BY

Size

5.28 MB

Format

Adobe PDF

Checksum (MD5)

02d986c710370616c68945d8d506b9db

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés