Layered hybrid perovskites have emerged as a promising alternative to stabilizing hybrid organic-inorganic perovskite materials, which are predominantly based on Ruddlesden-Popper structures. Formamidinium (FA)-based Dion-Jacobson perovskite analogs are developed that feature bifunctional organic spacers separating the hybrid perovskite slabs by introducing 1,4-phenylenedimethanammonium (PDMA) organic moieties. While these materials demonstrate competitive performances as compared to other FA-based low-dimensional perovskite solar cells, the underlying mechanisms for this behavior remain elusive. Here, the structural complexity and optoelectronic properties of materials featuring (PDMA)FA(n)(-1)Pb(n)I(3)(n)(+1)(n = 1-3) formulations are unraveled using a combination of techniques, including X-ray scattering measurements in conjunction with molecular dynamics simulations and density functional theory calculations. While theoretical calculations suggest that layered Dion-Jacobson perovskite structures are more prominent with the increasing number of inorganic layers (n), this is accompanied with an increase in formation energies that rendern > 2 compositions difficult to obtain, in accordance with the experimental evidence. Moreover, the underlying intermolecular interactions and their templating effects on the Dion-Jacobson structure are elucidated, defining the optoelectronic properties. Consequently, despite the challenge to obtain phase-puren > 1 compositions, time-resolved microwave conductivity measurements reveal high photoconductivities and long charge carrier lifetimes. This comprehensive analysis thereby reveals critical features for advancing layered hybrid perovskite optoelectronics.