Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Adaptive center-surround mechanisms in non-retinotopic processes
 
conference presentation

Adaptive center-surround mechanisms in non-retinotopic processes

Penaloza, Boris I
•
Herzog, Michael H  
•
Ogmen, Haluk
2019
19th Vision Sciences Society Annual Meeting (VSS)

The early visual system is organized retinotopically. However, motion perception occurs in non-retinotopic coordinates. Even though many perceptual studies revealed the central role of non-retinotopic processes, little is known about their neural correlates and mechanisms. Tadin and colleagues (2003) found that increasing the spatial size of a high-contrast drifting-Gabor deteriorates motion-direction discrimination whereas the opposite occurs with a low-contrast stimulus. This is proposed to reflect a perceptual correlate of an adaptive center-surround antagonism, whereby at low-contrast excitatory center dominates whereas at high-contrast suppressive-surround mechanisms become more effective. We tested the hypothesis that the non-retinotopic system also processes motion information by means of an adaptive center-surround mechanism. We used the Ternus-Pikler display, a paradigm that pits against each other retinotopic and non-retinotopic representations. The Ternus-Pikler display contained three Gabor-patches. Depending on ISI (133ms vs. 0ms), either group- or element-motion is perceived, i.e., either all Gabors moved back and forth in tandem or the utmost Gabors jumped alternating left-right. One of the Gabors in the display contained a fixed phase-shift that created the perception of coherent drift in either retinotopic or non-retinotopic coordinates. Observers were instructed to attend to one of the Gabors in the display and report its drift direction. We measured phase-shift thresholds for motion-direction discrimination while varying the size and contrast of the stimulus. Our results show a statistically significant interaction of size and contrast in both retinotopic and non-retinotopic tasks. We observed increases in thresholds as a function of size at high-contrast values and threshold decreases as a function of size at weak contrast values, thereby generalizing Tadin et al.’s results to non-retinotopic processing. Our results suggest that the non-retinotopic process may also be mediated by an adaptive center-surround mechanism where at low-contrast spatial summation prevails and then shifts to surround suppression as the input contrast increases.

  • Details
  • Metrics
Type
conference presentation
Author(s)
Penaloza, Boris I
Herzog, Michael H  
Ogmen, Haluk
Date Issued

2019

Written at

EPFL

EPFL units
LPSY  
Event nameEvent placeEvent date
19th Vision Sciences Society Annual Meeting (VSS)

St. Pete Beach, Florida, USA

May 17-200, 2019

Available on Infoscience
June 25, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/169625
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés