Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Neural correlates of target enhancement
 
conference poster not in proceedings

Neural correlates of target enhancement

da Cruz, Janir R  
•
Favrod, Ophélie  
•
Johnston, Phillip R
Show more
2019
19th Vision Sciences Society Annual Meeting (VSS)

When a task-relevant stimulus is presented for a brief duration or with low contrast, neural enhancement is needed to boost the weak responses to the target. Otherwise, the stimulus goes unnoticed, which is the default when the stimulus is task-irrelevant. Here, we used evoked-related potentials (ERPs) to investigate the neural mechanisms of target enhancement. The target consisted of a vernier, i.e., two vertical bars that are slightly offset in the horizontal direction. Observers discriminated the offset direction. First, we compared the ERPs elicited by the vernier when it was task-relevant vs. task-irrelevant. When the vernier was task-relevant, it elicited strong ERPs amplitudes at ~200ms after stimulus-onset with a bilateral negative occipital and positive fronto-central topography. This topography remained stable for around 140ms. When the vernier was task-irrelevant, similar ERPs were elicited but with much weaker amplitudes and for shorter topography durations. In a second experiment, we presented a mask after the target vernier, with varying inter-stimulus-intervals (ISIs). Performance on the target decreased linearly with the ISI, i.e., the shorter the ISI, the worse the performance. Interestingly, the ERPs amplitudes and topography durations decreased with the ISI. When the ISI was 0ms, performance was at chance level and ERPs amplitudes and topography durations were very similar to when the vernier was task-irrelevant. We propose that invisibility can come by either task irrelevance or masking. Under these two conditions, ERPs amplitudes and topographies are identical, suggesting similar brain processing.

  • Details
  • Metrics
Type
conference poster not in proceedings
Author(s)
da Cruz, Janir R  
Favrod, Ophélie  
Johnston, Phillip R
Figueiredo, Patrícia
Herzog, Michael H  
Date Issued

2019

Written at

EPFL

EPFL units
LPSY  
Event nameEvent placeEvent date
19th Vision Sciences Society Annual Meeting (VSS)

St. Pete Beach, Florida, USA

May. 17-22, 2019

Available on Infoscience
June 25, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/169624
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés