Generalized Synthesis to Produce Transparent Thin Films of Ternary Metal Oxide Photoelectrodes

Developing facile approaches to prepare non-light-scattering ternary oxide thin film photoelectrodes is an important goal for solar water splitting tandem cells. Herein, a novel synthesis route is reported that employs ethylenediaminetetraacetic acid (EDTA) to enable compatible water solubility of diverse metal cations, which affords transparent films by solution processing. By using BiVO4 as a model material, a remarkable improvement in transparency is demonstrated, quantified by the direct transmittance at 600 nm of >80 % versus the <10 % observed with state-of-the-art electrodeposited thin films while maintaining reasonable solar-driven oxidation photocurrents (1.75 mA cm(-2) in the presence of a sulfite hole scavenger). Furthermore, it is demonstrated that the synthesis technique can be applied in a general fashion towards the synthesis of diverse n- and p-type metal oxide materials, such as ZnFe2O4 and CuFeO2.


Published in:
Chemsuschem
Year:
Jun 04 2020
Publisher:
Weinheim, WILEY-V C H VERLAG GMBH
ISSN:
1864-5631
1864-564X
Keywords:
Laboratories:




 Record created 2020-06-18, last modified 2020-06-23


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)