Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Wafer-Scale Fabrication of Nanopore Devices for Single-Molecule DNA Biosensing using MoS2
 
research article

Wafer-Scale Fabrication of Nanopore Devices for Single-Molecule DNA Biosensing using MoS2

Thakur, Mukeshchand  
•
Macha, Michal  
•
Chernev, Andrey  
Show more
May 11, 2020
Small Methods

Atomically thin (2D) nanoporous membranes are an excellent platform for a broad scope of academic research. Their thickness and intrinsic ion selectivity (demonstrated for example in molybdenum disulfide-MoS2) make them particularly attractive for single-molecule biosensing experiments and osmotic energy harvesting membranes. Currently, one of the major challenges associated with the research progress and industrial development of 2D nanopore membrane devices is small-scale thin-film growth and small-area transfer methods. To address these issues, a large-area protocol including a wafer-scale monolayer MoS2 synthesis, Si/SiNx substrate fabrication and wafer-scale material transfer are demonstrated. First, the 7.62 cm wafer-scale MOCVD growth yielding homogenous monolayer MoS2 films are introduced. Second, a large number of devices are fabricated in one batch by employing the wafer-scale thin-film transfer method with high transfer efficiency (>70% device yield). The growth, the transfer quality and cleanliness are investigated using transmission electron microscopy, atomic force microscopy and Raman spectroscopy. Finally, the applicability and robustness of the large-area protocol is demonstrated by performing a set of double-stranded DNA translocation experiments through as-fabricated MoS2 nanopore devices. It is believed that the shown approach will pave the way toward wafer-scale, high-throughput use of 2D nanopores in various applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

WaferScaleNanoporeFab_Thakur2020SmallMethods_ms.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY

Size

1.46 MB

Format

Adobe PDF

Checksum (MD5)

25df6c76caa9a1fbe155b3f2b1b1b77c

Loading...
Thumbnail Image
Name

WaferScaleNanoporeFab_Thakur2020SmallMethods_SI.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY

Size

1.31 MB

Format

Adobe PDF

Checksum (MD5)

cb6a6e77fe9c4f386bff76f8a78ee911

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés