Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A sEMG-driven Soft ExoSuit based on Twisted String Actuators for Elbow Assistive Applications
 
research article

A sEMG-driven Soft ExoSuit based on Twisted String Actuators for Elbow Assistive Applications

Hosseini, Mohssen  
•
Meattini, Roberto
•
San Millan Rodriguez, Andres  
Show more
2020
IEEE Robotics and Automation Letters

The scope of this work is to show the applicability of the Twisted String Actuators (TSAs) for lightweight, wearable and assistive robotic applications. To this aim, we have developed a novel surface electromyography (sEMG)-driven soft ExoSuit using the TSAs to perform both single and dual-arm elbow assistive applications. The proposed ExoSuit, with an overall weight of 1650g, uses a pair of TSAs mounted in the back of the user, connected via tendons to the user’s forearms to actuate each arm independently for supporting external loads. We confirm this new light-weight and customizable wearable solution via multiple user studies based on the biceps and tricep’ sEMG measurements. We demonstrate that user’s muscles can automatically activate and regulate the TSAs and compensate for the user’s effort: by using our controller based on a Double Threshold Strategy (DTS) with a standard PID regulator, we report that the system was able to limit the biceps’ sEMG activity under an arbitrary target threshold, compensating a muscular activity equal to 220% (related to a single arm 3kg load) and 110% (related to a dual arm 4kg load) of the threshold value itself. Moreover, the triceps’ sEMG signal detects the external load and, depending on the threshold, returns the system to the initial state where it requires no assistance from the ExoSuit. The experimental results show the proposed ExoSuit’s capabilities in both single and dual- arm load compensation tasks. Therefore, the applicability of the TSAs is experimentally demonstrated for a real-case assistive device, fostering future studies and developments of this kind of actuation strategy for wearable robotic systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

19-1941_04_MS.pdf

Access type

restricted

Size

3.33 MB

Format

Adobe PDF

Checksum (MD5)

67d11d76912d728fe614aa84201e6892

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés