Introducing the CLEF 2020 HIPE Shared Task: Named Entity Recognition and Linking on Historical Newspapers

Since its introduction some twenty years ago, named entity (NE) processing has become an essential component of virtually any text mining application and has undergone major changes. Recently, two main trends characterise its developments: the adoption of deep learning architectures and the consideration of textual material originating from historical and cultural heritage collections. While the former opens up new opportunities, the latter introduces new challenges with heterogeneous, historical and noisy inputs. If NE processing tools are increasingly being used in the context of historical documents, performance values are below the ones on contemporary data and are hardly comparable. In this context, this paper introduces the CLEF 2020 Evaluation Lab HIPE (Identifying Historical People, Places and other Entities) on named entity recognition and linking on diachronic historical newspaper material in French, German and English. Our objective is threefold: strengthening the robustness of existing approaches on non-standard inputs, enabling performance comparison of NE processing on historical texts, and, in the long run, fostering efficient semantic indexing of historical documents in order to support scholarship on digital cultural heritage collections.

Jose, Joemon M.
Yilmaz, Emine
Magalhães, João
Castells, Pablo
Ferro, Nicola
Silva, Mário J.
Martins, Flávio
Published in:
Advances in Information Retrieval. ECIR 2020, 12036, 524-532
Presented at:
ECIR 2020 : 42nd European Conference on Information Retrieval, Lisbon, Portugal, April 14-17, 2020
Apr 08 2020
Cham, Springer International Publishing
Other identifiers:
Additional link:

Note: The status of this file is: Anyone

 Record created 2020-04-15, last modified 2020-10-27

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)