Hinges for origami-inspired structures by multimaterial additive manufacturing

Recent studies demonstrate novel metamaterials featuring unique properties by combining origami-inspired designs with additive manufacturing. In particular, the use of flexural hinges endow distinct advantages toward miniaturization and fabrication; however, there are limited applications due to the limited loading and fatigue resistance of the hinges. In this study, we focus on testing and characterizing mechanical properties of flexural hinges so that our findings could have immediate applications in 3D-printed origami structures. We introduce an aramid fiber composite hinge and compare it to a single-material polyamide and a multimaterial photopolymer hinge. We investigate the impact of the materials and geometric design parameters on the load carrying capability and flexural properties. Furthermore, the fatigue behavior of the hinges is characterized, identifying the constitutive mechanisms. We consolidate all the data and findings to construct a comprehensive design parameter – property map, which serves as a guideline for optimizing hinge performance for a given set of required properties.

Published in:
Materials & Design, 191
Mar 13 2020

Note: The status of this file is: Anyone

 Record created 2020-03-24, last modified 2020-04-28

Download fulltextPDF
Download fulltextPDF
Rate this document:

Rate this document:
(Not yet reviewed)