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A Realistic Wind Farm Optimization Framework

Different Turbine Layout Evolutionary Algorithms have been designed and implemented with the goal to optimize the performance of real wind
farms In operation in Europe. The flow dynamics framework relies on a wind turbine wake model (EPFL, 2014) that has shown a higher
accuracy compared to the traditionally used wake models. Three optimization perspectives have been considered: power output maximization,
power density optimization and multi-objective optimization, considering well resolved wind roses and free (non-gridded) turbine positioning.

The EPFL Gaussian model: A more accurate velocity deficit model

A new analytical wake model developed at WIRE (EPFL, 2014) has
been used for the first time to a realistic WFLO framework. The model
applies a Gaussian profile of the velocity deficit downstream of the turbine,
and has shown higher accuracy than the traditionally used wake models.

Jensen Model (Jensen, 1983)

Gaussian Model
(Bastankhah and Porte-Agel, 2014)

An Ad-Hoc Wind Farm Genetic Algorithm

Genetic (Evolutionary) Algorithms are metaheuristic
designed to optimize high-multidimensional problems with lower
computational cost compared to numerical simulations. Here a
new crossover-elitist approach especially adapted to the WFLO
problem has been introduced (EPFL2,2018).
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Real Wind Farm

Crossover-Elitist WFLO Genetic Algorithm
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Optimization of the Annual Return according to the
Number of Turbines and the Wind Farm Area Size

Preliminary results show that optimized layouts allow higher
Annual Returns (AR=5%) than the original layout (4.8%). At
the same time they allow for higher number of turbines. The
highest AR (5.2%) Is obtained for 1.75x the original area.

Area Shape-free Multi-Objective Optimization of the Power Output (PO)
and the electricity Cable Length (CL)

A Multi-Objective Optimization of the Power Output and the Cable-Length provides a set of Pareto
Solutions (Pareto Front, dark blue in Fig.b), that allows the Iinvestor to obtain a personalized
trade-off between the electricity Cable costs and the Power Output performance. Results provide
solutions with a PO improvement up to >2% (CL reduction of 14%,
reduction (Fig.a). Finally, a 23% CL reduction is obtained for a PO as Iin the baseline.

Fig ¢) until a 64% CL
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