Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Elastic properties of self-organized nanogratings produced by femtosecond laser exposure of fused silica
 
research article

Elastic properties of self-organized nanogratings produced by femtosecond laser exposure of fused silica

Vlugter, Pieter  
•
Bellouard, Yves  
February 27, 2020
Physical Review Materials

Under certain exposure conditions, a femtosecond laser beam focused in the bulk of fused silica leads to the formation of self-organized structures consisting of a series of “nanolayers,” parallel to one another. Remarkably, this laser-induced nanoscale anisotropy offers the possibility to locally engineer macroscopic properties of a given substrate by selectively exposing it in arbitrarily chosen locations to a laser beam with designed polarization states. Although various physical properties are affected by the laser, this paper specifically discusses in-plane elastic properties of these nanostructures. Using a method based on monitoring resonant properties of vibrating cantilevers combined with a mechanical model of the nanostructures, the Young's moduli of individual nanolayers are calculated and used to define the stiffness matrix of the composite structure. The model shows a good agreement with measured mechanical properties of arbitrarily oriented nanostructures. This work demonstrates the predictability and controllability of laser-induced nanoscale mechanical properties and offers a framework for engineering arbitrary elastic properties through 3D laser writing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevMaterials.4.023607.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.18 MB

Format

Adobe PDF

Checksum (MD5)

8c6a7b2aeb1b2c6817fb15938a0022bc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés