Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Measurement of $\mathrm{t\bar t}$ normalised multi-differential cross sections in pp collisions at $\sqrt s=13$ TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions
 
report

Measurement of $\mathrm{t\bar t}$ normalised multi-differential cross sections in pp collisions at $\sqrt s=13$ TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

Sirunyan, Albert M
•
Tumasyan, Armen
•
Adam, Wolfgang
Show more
April 10, 2019

Normalised multi-differential cross sections for top quark pair ($\mathrm{t\overline{t}}$) production are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV using events containing two oppositely charged leptons. The analysed data were recorded with the CMS detector in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The double-differential $\mathrm{t\overline{t}}$ cross section is measured as a function of the kinematic properties of the top quark and of the $\mathrm{t\overline{t}}$ system at parton level in the full phase space. A triple-differential measurement is performed as a function of the invariant mass and rapidity of the $\mathrm{t\overline{t}}$ system and the multiplicity of additional jets at particle level. The data are compared to predictions of Monte Carlo event generators that complement next-to-leading-order (NLO) quantum chromodynamics (QCD) calculations with parton showers. Together with a fixed-order NLO QCD calculation, the triple-differential measurement is used to extract values of the strong coupling strength $\alpha_S$ and the top quark pole mass ($m_\mathrm{T}^\text{pole}$) using several sets of parton distribution functions (PDFs). Furthermore, a simultaneous fit of the PDFs, $\alpha_S$, and $m_\mathrm{T}^\text{pole}$ is performed at NLO, demonstrating that the new data have significant impact on the gluon PDF, and at the same time allow an accurate determination of $\alpha_S$ and $m_\mathrm{T}^\text{pole}$.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1904.05237.pdf

Access type

openaccess

Size

1.89 MB

Format

Adobe PDF

Checksum (MD5)

7008a149031799d6c373f1f843b2010e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés