Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Challenges to the chiral magnetic wave using charge-dependent azimuthal anisotropies in pPb and PbPb collisions at $\sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV
 
report

Challenges to the chiral magnetic wave using charge-dependent azimuthal anisotropies in pPb and PbPb collisions at $\sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV

Sirunyan, Albert M
•
Tumasyan, Armen
•
Adam, Wolfgang
Show more
August 29, 2017

Charge-dependent anisotropy Fourier coefficients ($v_n$) of particle azimuthal distributions are measured in pPb and PbPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV with the CMS detector at the LHC. The normalized difference in the second-order anisotropy coefficients ($v_2$) between positively and negatively charged particles is found to depend linearly on the observed event charge asymmetry with comparable slopes for both pPb and PbPb collisions over a wide range of charged particle multiplicity. In PbPb, the third-order anisotropy coefficient, $v_3$, shows a similar linear dependence with the same slope as seen for $v_2$. The observed similarities between the $v_2$ slopes for pPb and PbPb, as well as the similar slopes for $v_2$ and $v_3$ in PbPb, are compatible with expectations based on local charge conservation in the decay of clusters or resonances, and constitute a challenge to the hypothesis that the observed charge asymmetry dependence of $v_2$ in heavy ion collisions arises from a chiral magnetic wave.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

arXiv_1708.08901.pdf

Access type

openaccess

Size

474.92 KB

Format

Adobe PDF

Checksum (MD5)

1d49eb598dbd47c348cb7f1300104d67

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés