Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sampling can be faster than optimization
 
research article

Sampling can be faster than optimization

Ma, Yi-An
•
Chen, Yuansi
•
Jin, Chi
Show more
2019
Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS)

Optimization algorithms and Monte Carlo sampling algorithms have provided the computational foundations for the rapid growth in applications of statistical machine learning in recent years. There is, however, limited theoretical understanding of the relationships between these 2 kinds of methodology, and limited understanding of relative strengths and weaknesses. Moreover, existing results have been obtained primarily in the setting of convex functions (for optimization) and log-concave functions (for sampling). In this setting, where local properties determine global properties, optimization algorithms are unsurprisingly more efficient computationally than sampling algorithms. We instead examine a class of nonconvex objective functions that arise in mixture modeling and multistable systems. In this nonconvex setting, we find that the computational complexity of sampling algorithms scales linearly with the model dimension while that of optimization algorithms scales exponentially.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

20881.full.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

809.36 KB

Format

Adobe PDF

Checksum (MD5)

71c74ca211c06c786cbcd683070fdbaa

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés