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1 Introduction

Mean Field Theory (MFT) provides some of the simplest examples of crossing-symmetric,

conformally-invariant correlation functions. Correlators in MFT are simply sums of prod-

ucts of two-point functions. In theories exhibiting large-N factorization, MFT is the leading

contribution at large-N . For example, in AdS/CFT, MFT is the leading contribution to

correlators in bulk perturbation theory [1–3]. In the analytic conformal bootstrap, MFT

is the leading contribution to correlators at large spin [4–10]. MFT provides crucial ex-

ample data for the numerical bootstrap [11], especially for spinning operators [12–16].

Furthermore, MFT OPE coefficients form the “ladder kernel” in SYK-like models [17–23].
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Consequently, the OPE data of MFT (i.e. the scaling dimensions and OPE coefficients) is

the starting point for many computations.

Although correlators in MFT are simple, the OPE data can be nontrivial. OPE coeffi-

cients for a four-point function of fundamental scalars in MFT in 2- and 4- dimensions were

guessed in [24].1 They were subsequently generalized to d-dimensions in [25] using a tech-

nique dubbed “conglomeration”. In this work, we point out that conglomeration is part of

a general toolkit of harmonic analysis for the Euclidean conformal group SO(d+ 1, 1) [26].

Although harmonic analysis was first applied to CFTs in the 70’s, it has played an es-

pecially important role in recent developments [17–23, 27–31]. In section 2, we give an

introduction to harmonic analysis for (Euclidean) CFTs.

The calculation of [25] can be rephrased in terms of simple ingredients: the Plancherel

measure, three-point pairings, and the “shadow transform” [32, 33]. In particular, the

computation of MFT OPE coefficients factorizes into two independent shadow transforms

of three-point functions, which are essentially generalizations of the famous “star-triangle”

integral [34, 35]. Using these observations, we write a general formula for OPE data of

fundamental MFT fields in arbitrary Lorentz representations in section 2.8. Along the way,

we derive orthogonality relations for conformal partial waves with arbitrary (internal and

external) Lorentz representations.

Our derivation essentially uses a “Euclidean inversion formula” — a formula that

expresses OPE data as an integral of a four-point function over Euclidean space. MFT

OPE data can also in principle be computed by applying the Lorentzian inversion formula

of Caron-Huot [28] (and its generalization to arbitrary spins [31]) to the unit operator

in the crossed-channel. However, the resulting cross-ratio integral is difficult to perform

in general spacetime dimensions, where conformal blocks are not known explicitly. (It is

however doable in 2 and 4 dimensions [23].) Our calculation “gauge-fixes” the conformal

symmetry in a different way, resulting in a simpler integral.

In section 3, we show how the Plancherel measure and shadow transform can be

computed efficiently using weight-shifting operators [36]. Weight-shifting operators are

conformally-covariant differential operators that allow one to shift dimensions and spins

appearing in conformal correlators. Using them, one can derive recursion relations for

essentially any quantity in harmonic analysis of SO(d + 1, 1).2 In [36], it was shown how

to use weight-shifting operators to derive recursion relations for conformal blocks and 6j

symbols. In this work, we use weight-shifting operators to give an elementary derivation of

the Plancherel measure for general representations in section 3.3. In section 3.4, we show

how to compute shadow transforms using weight-shifting operators, and then combine

these ingredients in section 3.5 to re-derive MFT OPE coefficients for scalars in general

d, and derive new formulas for “seed” correlators and fermion four-point functions in 4d.

We focus on these cases to compare to previous results/guesses in the literature, but it is

straightforward to study other cases using our techniques.

1Here, “fundamental” means not a composite of other MFT operators. In context of large-N theories,

fundamental is equivalent to single-trace.
2Weight-shifting operators are essentially Clebsch-Gordon coefficients for the tensor product of a finite-

dimensional representation and a Verma module. We expect that they can be used in a similar way for

harmonic analysis of any group.
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In section 4, we develop another approach to computing shadow transforms based

on Fourier space. Because the shadow-transform is a translationally-invariant integral

transform, it becomes simply multiplication by a finite-dimensional matrix in Fourier space.

In section 4.1, we describe how to compute the Fourier transform of arbitrary 2- and 3-

point functions in 3d and use this to compute shadow transforms in 3d CFTs. We also

clarify some subtleties of three-point pairings for conserved operators. As an application,

in sections 4.3 and 4.4 we derive the OPE data for four-point functions of currents and

stress-tensors in 3d. We expect that this data will prove useful in future analytic bootstrap

studies of these correlators.

The appendices collect conventions and helpful calculations. In particular, appendix C

gives a complete summary of our formalism for working with conformal correlators and

weight-shifting operators in 4 dimensions.3 Appendix D summarizes our conventions in

3 dimensions.

2 Review of harmonic analysis for SO(d + 1, 1)

In this section, we review some aspects of harmonic analysis on the Euclidean conformal

group SO(d + 1, 1). This subject was given a detailed and rigorous treatment in the 70’s

by Dobrev et. al. [26]. Here, we highlight some key results and generalize some of the

discussion to include arbitrary SO(d) representations. Our focus is on setting up tools for

computations.

2.1 Shadow representations

A primary operator O is labeled by a scaling dimension ∆ and a finite-dimensional irre-

ducible representation ρ of SO(d). We denote the SO(d+ 1, 1) representation of O as V∆,ρ.

A few related representations will be important in this work. The reflected representation

ρR of SO(d) is defined by

ρR(g) ≡ ρ(RgR−1), g ∈ SO(d), (2.1)

where R ∈ O(d) is a reflection in any direction.4,5 The operator O has a unique two-point

structure (up to an overall coefficient) with an operator O† transforming in V∆,ρ† , where

ρ† = (ρR)∗ is the dual of ρR.6 We denote this two-point structure by

〈O(x)O†(y)〉 = O O† , (2.2)

3A Mathematica notebook with all the 4d computations is included with this paper. To run it one needs

to install the “CFTs4D” package [37].
4In odd-dimensions, ρR is equivalent to ρ. In even-dimensions, reflection means swapping the weights

associated to the two spinor representations. In cases when ρR ' ρ it is convenient to use the same

realization for both ρ and ρR.
5More generally, given a group G, the group of outer automorphisms Out(G) acts on the ring of represen-

tations of G. Given σ ∈ Out(G) and a representation ρ, the action is σ : ρ 7→ ρ′, where ρ′(g) = ρ(σ−1(g)).

Conjugation by a reflection is an outer automorphism of SO(d) when d is even.
6ρ† is the complex conjugate of ρ in Lorentzian signature.
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where we have suppressed SO(d)-indices for brevity. On the right-hand side we use the

same diagrammatic notation for two-point functions as in [36].

The “shadow representation” of V∆,ρ is given by V
∆̃,ρR

, where

∆̃ ≡ d−∆. (2.3)

We denote an operator transforming in V
∆̃,ρR

as Õ. Note that Õ† transforms in the

representation V
∆̃,ρ∗ where ρ∗ = ((ρR)R)∗ is the dual of ρ. Thus, there exists a natural

conformally-invariant pairing7

(Õ†,O) =

∫
ddx Õ†(x)O(x), (2.4)

where we implicitly contract the SO(d)-indices of Õ† and O, since they are in dual repre-

sentations ρ and ρ∗ of SO(d). The product Õ†(x)O(x) has scaling dimension ∆ + ∆̃ = d,

which cancels against the scaling dimension of the measure ddx, so that the integral is

conformally-invariant.

Instead of writing V∆,ρ, etc. it will often be convenient to use shorthand notation

where O stands for the conformal representation with weights (∆, ρ). Similarly Õ will be

shorthand for the representation with weights (d − ∆, ρR), O† will be shorthand for the

representation with weights (∆, ρ†), and Õ† will be shorthand for the representation with

weights (d−∆, ρ∗). In particular, O† is not necessarily the hermitian conjugate of a physical

operator — it is simply convenient notation for a particular conformal representation.

When we write two- and three-point correlators of operators Oi, we mean a conformally-

invariant structure associated to those representations. Correlation functions in physical

theories are linear combinations of the possible structures.

To denote shadow representations diagrammatically, we will use the following conven-

tion: an arrow in one direction labeled by O is the same as an arrow labeled by Õ† going

in the opposite direction, i.e.

O = Õ† . (2.5)

Here, the shaded circle represents some conformally-invariant structure involving O. Using

this convention, the conformally-invariant pairing (2.4) can be written diagrammatically as(
O , Õ†

)
=

O
. (2.6)

2.2 Principal series representations and the shadow transform

Our main interest will be unitary principal-series representations E∆,ρ, where the scaling

dimension takes the form

∆ =
d

2
+ is, s ∈ R. (2.7)

7In principle there is only one canonical way to pair ρ∗ and ρ. However, if ρ∗ = ρ, then we can choose

which operator to treat as transforming in the dual representation, which may lead to sign ambiguities for

fermionic representations. In such cases, care should be taken to assign these signs consistently, e.g. by

tracking the order in which Õ† and O are written. See, e.g., (C.12).
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Elements of E∆,ρ can be thought of as functions fa(x) on Rd satisfying the usual transforma-

tion law for primary operators (here, a = 1, · · · , dim ρ is an index for ρ). The significance

of principal series representations is that (fa(x))∗ transforms in the representation E
∆̃,ρ∗ ,

so (2.4) gives rise to a positive-definite hermitian inner product on E∆,ρ,

〈g, f〉 =

∫
ddx (ga(x))∗fa(x). (2.8)

The representation E∆,ρ is equivalent to its shadow representation E
∆̃,ρR

via the shadow

transform:8

S : E∆,ρ → E∆̃,ρR

S[O](x) =

∫
ddy〈Õ(x)Õ†(y)〉O(y). (2.9)

Again, in (2.9), we are implicitly contracting SO(d)-indices between Õ†(y) and O(y). The

shadow transform S is an example of a Knapp-Stein intertwining operator [38]. Note that

the shadow transform is a convolution, which means it simply becomes multiplication in

Fourier space. This fact will play an important role in section 4.

In diagrammatic language, shadow transform can be expressed as a contraction with

the shadow two-point function,

O
S−−−−→

OÕ . (2.10)

2.3 Pairings between structures

There is a natural conformally-invariant pairing between n-point functions of Oi and n-

point functions of Õ†i , given by multiplying and integrating over all points modulo the

conformal group,9(
〈O1 · · ·On〉,〈Õ†1 · · ·Õ

†
n〉
)

=

∫
ddx1 · · ·ddxn

volSO(d+1,1)
〈O1 · · ·On〉〈Õ†1 · · ·Õ

†
n〉, (2.11)

O1
...

On

,
Õ†1
...

Õ†n

=

O1

...

On

. (2.12)

Here, we essentially use the pairing (2.4) for each pair of operators Oi, Õ†i . Dividing by

vol SO(d+ 1, 1) is necessary because the integrand is conformally-invariant, so the integral

would otherwise be infinite. In diagrammatic language, we agree to implicitly divide by

volume of vol SO(d+ 1, 1) whenever we have a connected subdiagram with completely

8This transform was called SE (“E” for “Euclidean) in [31] to distinguish it from other conformally-

invariant integral transforms in Lorentzian signature. Those other transforms will not play a role in this

work, so we omit the “E”.
9Note that since the product of operators in any n-point function is bosonic, there are no potential sign

ambiguities in the n-point pairing.
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contracted legs. To implement the quotient, we gauge-fix the conformal group and insert

the appropriate Fadeev-Popov determinant.

This pairing (2.11) is particularly simple for three-point structures. In that case, we

can use conformal transformations to set x1 = 0, x2 = e, x3 = ∞ (with e a unit vector),

and no actual integration is necessary. We have simply(
〈O1O2O3〉, 〈Õ†1Õ

†
2Õ
†
3〉
)

=
1

2d vol SO(d− 1)
〈O1(0)O2(e)O3(∞)〉〈Õ†1(0)Õ†2(e)Õ†3(∞)〉.

(2.13)

The factor of 2−d is the Fadeev-Popov determinant for this gauge fixing.10 Our convention

for an operator insertion at ∞ is11

O(∞) = lim
L→∞

L2∆O(Le). (2.14)

The factor vol SO(d− 1) is the volume of the stabilizer group of three points. Our normal-

ization convention for the measure on SO(d) is that

vol SO(d) = volSd−1 vol SO(d− 1) =
2πd/2

Γ(d/2)
vol SO(d− 1), (d ≥ 2) (2.15)

and vol SO(1) = 1.

As an example, a scalar-scalar-spin-J correlator has a single conformally-invariant

tensor structure (up to normalization), given by12

〈φ1(x1)φ2(x2)Oµ1···µJ
3,J (x3)〉 =

Zµ1 · · ·ZµJ − traces

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
31

,

Zµ ≡ |x13||x23|
|x12|

(
xµ13

x2
13

− xµ23

x2
23

)
. (2.16)

The pairing in this case is(
〈φ1φ2O3,J〉, 〈φ̃1φ̃2Õ3,J〉

)
=

1

2d vol SO(d− 1)
(eµ1 · · · eµJ − traces)(eµ1 · · · eµJ − traces)

=
1

2d vol SO(d− 1)
ĈJ(1)

=
1

2d vol(SO(d− 1))

(d− 2)J

2J
(
d−2

2

)
J

, (2.17)

where

ĈJ(x) =
Γ(J + 1)Γ(d−2

2 )

2JΓ(J + d−2
2 )

C
d−2

2
J (x) = xJ + · · · , (2.18)

and CνJ (x) is a Gegenbauer polynomial.

10In [39], a different definition of vol SO(d+ 1, 1) was used which omitted the factor of 2−d. We include

the factor because it simplifies the expression for the Plancherel measure in section 3.3.4.
11In particular, we do not include a reflection in the e direction. Thus, our definition of an insertion at

∞ depends on which direction we move the operator towards ∞.
12Recall that 2 or 3 point correlators in this paper stand for conformally-invariant structures associated

to the given representations.
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In general, spinning operators Oi admit multiple conformally-invariant three-point

structures 〈O1O2O3〉(a), a = 1, · · · , N . These structures are classified by [40]13

(ρ1 ⊗ ρ2 ⊗ ρ3)SO(d−1), (2.19)

where (ρ)H denotes the H-invariant subspace of ρ. The pairing (2.13) can be thought of

as a pairing between the associated spaces of three-point structures(
〈O1O2O3〉(a), 〈Õ†1Õ

†
2Õ
†
3〉

(b)
)
. (2.20)

This pairing is nondegenerate because it can be interpreted as a positive-definite hermitian

inner product on the space (2.19), since complex conjugation takes ρ→ ρ∗ because SO(d)

is compact. We often omit the structure label (a) when there is a unique structure for the

given representations.

The three-point pairing (2.19) can be partially diagonalized as follows. Let

Res
SO(d)
SO(d−1)ρi = ⊕jλij (2.21)

be the restriction of ρi to a representation of SO(d − 1), together with its decomposition

into irreps λij of SO(d−1). (This decomposition is guaranteed to be multiplicity-free [41].)

The space of three-point structures can be written as

⊕j1,j2,j3(λ1j1 ⊗ λ2j2 ⊗ λ3j3)SO(d−1). (2.22)

Because the pairing (2.19) is SO(d−1)-invariant, it is nonzero only if λij is paired with λ∗ij
for each i = 1, 2, 3. For example, in three-dimensions, three-point structures are labeled

by a collection of SO(2) weights [q1, q2, q3], such that q1 + q2 + q3 = 0 [40]. The only

nonvanishing pairings are ([q1, q2, q3], [−q1,−q2,−q3]) 6= 0.

The shadow transform gives a linear map between spaces of three-point structures,

〈S[O1]O2O3〉(a) = S([O1]O2O3)ab〈Õ1O2O3〉(b), (2.23)

(A sum over three-point structures b is implicit.) We call the coefficients S([O1]O2O3)ab
“shadow coefficients”. The brackets indicate which operator has been shadow-transformed.

We discuss how to compute shadow coefficients in sections 3.4 and 4.

2.4 The Plancherel measure

The Plancherel measure for a group G is a measure on the space Ĝ of unitary irreducible

representations of G. For compact groups, the Plancherel measure is discrete, with value
dimπ
volG for each unitary irreducible representation π. (Here, volG is defined using the Haar

measure on G.) We can also write this as

µ(π) =
dimπ

volG
=

Trπ(1)

volG
(compact G). (2.24)

13Here, we ignore the possibility of permutation symmetries and conservation conditions. We briefly

discuss conservation conditions in section 4.3.2.
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For noncompact groups, both dim π and volG can be infinite, and it is useful to

think of the Plancherel measure as a kind of regularized quotient. For principal series

representations of SO(d+ 1, 1), we have

µ(∆, ρ)

vol SO(1, 1)
=

TrE∆,ρ(1)

vol SO(d+ 1, 1)
=

O
, (2.25)

where µ(∆, ρ) is a finite quantity that we henceforth refer to as the Plancherel measure.

Both the left and right-hand sides above are formal expressions and we will see how they

are useful shortly. One way to understand the infinite factor vol SO(1, 1) on the left-hand

side is to imagine computing the trace via an integral. The identity transformation 1 is

given by the kernel

1xx′ = δmp δ(x− x′), (2.26)

where m, p are Lorentz indices for ρ, ρ∗. Then we have

Tr(1)

vol SO(d+ 1, 1)
=

∫
ddxδd(x− x)δmm

vol SO(d+ 1, 1)
∼ (volRd)2 dim ρ

vol SO(d+ 1, 1)
. (2.27)

The group SO(d + 1, 1) has three types of noncompact generators: translations, special

conformal generators, and dilatations. The translations and special conformal generators

give (volRd)2, which cancels the infinite factors in the numerator. The remaining infinite

factor in the denominator is the volume of dilatations, which is vol SO(1, 1). This argument

makes it hard to see what the remaining finite factors are, but we will show a way to

determine them in the next subsection.

The Plancherel measure µ(∆, ρ) is known in great generality [26]. We will rederive it

in section 3.3.

2.5 Relation to the shadow transform

Note that the square of the shadow transform S2 takes the representation E∆,ρ to itself.

By irreducibility, it must be proportional to the identity,

S2 = N (∆, ρ)1, (2.28)

where N (∆, ρ) is some constant that depends on the representation S2 acts on. N (∆, ρ)

also depends implicitly on a choice of normalization of the two-point structure used to

define S.

The coefficient N (∆, ρ) is closely related to the Plancherel measure [38]. To see how,

let us take the trace on both sides of (2.28) and divide by the volume of the conformal

group. Writing out the shadow transforms explicitly, we have

N (∆, ρ)
µ(∆, ρ)

vol SO(1, 1)
=

∫
ddxddy

vol SO(d+ 1, 1)
〈Oa(x)O†b(y)〉〈Õb(y)Õ†a(x)〉

=
1

2d vol SO(d) vol SO(1, 1)
〈Oa(0)O†b(∞)〉〈Õb(∞)Õ†a(0)〉. (2.29)

– 8 –
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Here we have gauge-fixed x = 0 and y =∞ in the integral. The factors in the denominator

are the volume of the stabilizer group of two points, SO(1, 1) × SO(d), together with a

Fadeev-Popov determinant. Thus, we conclude

µ(∆, ρ) =
1

N (∆, ρ)

〈Oa(0)O†b(∞)〉〈Õb(∞)Õ†a(0)〉
2d vol SO(d)

. (2.30)

Note that whileN (∆, ρ) depends on a choice of two-point structures, µ(∆, ρ) is independent

of this choice because any change in convention cancels between 〈· · ·〉〈· · ·〉 in the numerator

and N (∆, ρ) in the denominator.

Diagrammatically, we can understand the calculation above as

(
O O† , Õ Õ†

)
=

O

Õ

=

O

Õ

= N (∆, ρ)

O
. (2.31)

2.6 Bubble diagrams

Suppose O,O′ are both principal series representations, with dimensions ∆ = d
2 + is,

∆′ = d
2 + is′ with s, s′ > 0. A “bubble” integral of two three-point structures is given by∫

ddx1d
dx2〈O1O2O(x)〉〈Õ†1Õ

†
2Õ
′†(x′)〉 = B 1xx′δOO′ ,

δOO′ ≡ 2πδ(s− s′)δρρ′ . (2.32)

For brevity, we use the convention that operators with subscript i are at position xi (unless

otherwise specified). By irreducibility and inequivalence of principal series representations,

the integral on the left-hand side can only be nonzero if the representations O and O′

are the same, in which case it must be proportional to the identity transformation. This

explains the factors 1xx′δOO′ .
14 In terms of diagrams we have

O O′
O1

O2

= BδOO′ O O′ . (2.33)

To figure out the constant B, we can set O = O′ and take the trace of both sides,

dividing by the volume of the conformal group. This gives(
〈O1O2O〉, 〈Õ†1Õ

†
2Õ
†〉
)

= B 2πδ(0)
µ(∆, ρ)

vol SO(1, 1)
. (2.34)

The infinite factors δ(0) and vol SO(1, 1) will cancel, leaving a finite coefficient. To deter-

mine the correct coefficient, we can compute an example bubble integral, for example in

the case where all operators are scalars. The result is vol SO(1, 1) = 2πδ(0), so we find

B =
1

µ(∆, ρ)

(
〈O1O2O〉, 〈Õ†1Õ

†
2Õ
†〉
)
. (2.35)

14The above formula is sometimes written with two terms on the right-hand side, one proportional to

1 δ(s−s′), and another proportional to S δ(s+s′). Here, we have only a single term because we have chosen

to restrict s, s′ > 0, which is a fundamental domain under the affine Weyl transformation ∆→ d−∆. The

cases where s, s′ are not both positive can be obtained by composing with shadow transforms.
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2.7 Conformal partial waves

A conformal partial wave is a conformally-invariant integral of two three-point structures,15

Ψ
Oi(ab)
O (xi) =

∫
ddx〈O1O2O(x)〉(a)〈O3O4Õ†(x)〉(b)

=

O1

O2

O3

O4

O
a b . (2.36)

Again, we use the convention that Oi is at position xi, so that Ψ
Oi(ab)
O is a function of the

four positions x1, . . . , x4. Here, a, b label the possible conformally-invariant structures for

their respective three-point functions. As usual, we are implicitly contracting the Lorentz

indices of O and Õ†. The integral (2.36) converges when all operators O1, . . .O4,O trans-

form in principal series representations. We will assume this is the case for most of this

work, and obtain results for non-principal series representations by analytic continuation

in ∆i,∆.

By construction, Ψ
Oi(ab)
O transforms like a conformally-invariant four-point function of

O1, . . . ,O4 and is an eigenvector of the conformal Casimir equations [43]. Furthermore, it

is clearly single-valued in Euclidean signature because it is a convergent integral of single-

valued functions. Principal series conformal partial waves furnish an “almost complete” set

of single-valued solutions to the Casimir equations. That is, a general four-point function

of Oi’s can be expanded in partial waves as

〈O1 · · · O4〉 =
∑
ρ

∫ d
2

+i∞

d
2

d∆

2πi
Iab(∆, ρ)Ψ

Oi(ab)
O (xi) + discrete. (2.37)

(Repeated a, b indices are summed over.) Here, “discrete” represents possible additional

isolated contributions. Such contributions are absent when the Oi are all scalars on the

principal series [26]. When the Oi are allowed to be non-principal series representations or

when 〈O1 · · · O4〉 is non-normalizable in the sense that we will define below, we may need

to include isolated terms, for example the unit operator [28, 39]. We will discuss these

subtleties below in some examples.

Conformal partial waves are orthogonal with respect to the pairing between four-point

structures defined in section 2.3. An inner product of partial waves can be computed on

15The term “conformal partial wave” (CPW) has disparate meanings in the literature. Several recent

works on CFT from the past 20 years [33, 42–44] use the term CPW for what we call a conformal block —

namely the contribution of an individual conformal multiplet to a four-point function in radial quantization.

In those works, “conformal block” refers to the dimensionless function of z, z̄ obtained by multiplying by

standard dimensionful factors. We do not find it helpful to use a separate term for the dimensionless function

of cross-ratios, especially because there is no canonical convention for this function in the case of spinning

operators. Thus, we follow the terminology of [26] and reserve CPW for the integral of two three-point

functions and “conformal block” for the contribution of a conformal multiplet to a four-point function.
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very general grounds without ever computing the partial waves themselves. The argu-

ment is as follows. Consider an inner product of partial waves and insert their shadow

representations (2.36),(
Ψ
Oi(ab)
O ,Ψ

Õ†i (cd)

Õ′†

)
=

∫
ddx1 · · · ddx6

vol SO(d+ 1, 1)
〈O1O2O(x5)〉(a)〈O3O4Õ†(x5)〉(b)

× 〈Õ†1Õ
†
2Õ
′†(x6)〉(c)〈Õ†3Õ

†
4O
′(x6)〉(d). (2.38)

Using our bubble integral formula for the x3, x4 integrals, the result is a three-point pairing

= δOO′

(
〈O3O4Õ†〉(b),〈Õ†3Õ

†
4O〉(d)

)
µ(∆,ρ)

∫
ddx1d

dx2d
dx5d

dx6

volSO(d+1,1)
〈O1O2O(x5)〉(a)156〈Õ1Õ2Õ′†(x6)〉(c)

=

(
〈O1O2O〉(a),〈Õ†1Õ

†
2Õ†〉(c)

)(
〈O3O4Õ†〉(b),〈Õ†3Õ

†
4O〉(d)

)
µ(∆,ρ)

2πδ(s−s′)δρρ′ . (2.39)

It is also possible to derive this expression for the inner product between partial waves by

gauge-fixing the integral to cross-ratio space and examining the OPE limit, as we show in

appendix A. The approach here is much simpler.

It follows from (2.39) that Iab(∆, ρ) is determined by the “Euclidean inversion formula”

Iab(∆,ρ)

µ(∆,ρ)

(
〈O1O2O〉(a),〈Õ†1Õ

†
2Õ
†〉(c)

)(
〈O3O4Õ†〉(b),〈Õ†3Õ

†
4O〉

(d)
)

=

(
〈O1 · · ·O4〉,Ψ

Õ†i (cd)

Õ†

)
.

(2.40)

One can gauge fix the integral (2.40) and express it as an integral over cross-ratios, as

described in [39] and appendix A. However this will not be useful for our purposes.

Note that the right-hand side of the Euclidean inversion formula is also described by

the following diagram

O1

O2

O3

O4

O

c d . (2.41)

2.7.1 Relation to conformal blocks

Conformal partial waves are a linear combination of a conformal block for the exchange

of O and a block for the exchange of Õ. The coefficients can be determined as follows.

Consider the integral

Ψ
(ab)
O =

∫
ddx〈O1O2O(x)〉(a)〈O3O4Õ†(x)〉(b). (2.42)

(For brevity, we will henceforth leave the dependence of Ψ on the external operators Oi
implicit.) Since this is a solution to the Casimir equation, it is uniquely determined by its

singularities in the OPE limit x1 → x2 (equivalently x3 → x4). It suffices to estimate the

integral in this limit.
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We cannot simply take the limit x1 → x2 inside the integrand because x probes the

neighborhood near x1, x2, where the OPE is invalid. However, this is a valid procedure for

determining the contribution to the integral from outside this neighborhood. Thus, let us

make the replacement

〈O1O2O(x)〉(a) → C
(a)
12O〈O

†(x2)O(x)〉, (2.43)

where C
(a)
12O encodes the leading term in the OPE O1 × O2. (For example, when all the

operators are scalars, we have C12O = x∆O−∆1−∆2
12 . More generally, C12O can have indices

which are contracted with those of O†.) The integral over x then becomes a shadow

transform of Õ†,

Ψ
(ab)
O ∼ C(a)

12O〈O3O4S[Õ†]〉(b) = S(O3O4[Õ†])bcC(a)
12O〈O3O4O†〉(c), (2.44)

where we are using the notation for shadow coefficients introduced in (2.23).

We define a conformal block G
(ab)
O as the solution to the conformal Casimir equations

that behaves in the OPE limit as

G
(ab)
O ∼ C(a)

12O〈O3O4O†〉(b) (x1 → x2). (2.45)

(Like partial waves, conformal blocks also depend on the external operators, but here we

leave this dependence implicit.) Note that in our conventions, O† appears in the O1 ×O2

OPE and O appears in the O3 ×O4 OPE. In the notation of [31], the block is given by

G
(ab)
O =

〈O1O2O〉(a)〈O3O4O†〉(b)

〈O†O〉
, (2.46)

where the three-point structures in the numerator should be merged by summing over

descendants. Concretely, the leading term in the OPE limit is given in (A.5). Thus, (2.44)

shows that Ψ
(ab)
O contains a term

Ψ
(ab)
O ⊃ S(O3O4[Õ†])bcG(ac)

O . (2.47)

To compute the term in Ψ
(ab)
O proportional to GÕ, we repeat the above argument using the

O3 ×O4 OPE. This gives

Ψ
(ab)
O ∼ C(b)

34Õ†
〈O1O2S[O]〉a ∼ S(O1O2[O])acG

(cb)

Õ
. (2.48)

Putting everything together, we find16

Ψ
(ab)
O = S(O3O4[Õ†])bcG(ac)

O + S(O1O2[O])acG
(cb)

Õ
. (2.49)

We can now relate the conformal partial wave decomposition to the usual conformal

block decomposition. We plug (2.49) into (2.37) to obtain

〈O1 · · ·O4〉=
∑
ρ

∫ d
2

+i∞

d
2

d∆

2πi
Iab(∆,ρ)

(
S(O3O4[Õ†])bcG(ac)

O +S(O1O2[O])acG
(cb)

Õ

)
. (2.50)

16In case of fermionic O, and depending on ordering conventions, there may be an additional (−1) factor

in the second term, which is inconsequential for our purposes. For simplicity of discussion, we ignore this

subtlety.
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Using the inversion formula (2.40), one can show that the second term above gives the

same contribution as we get by extending the range of integration to the whole imaginary

axis. Thus, we have

〈O1 · · · O4〉 =
∑
ρ

∫ d
2

+i∞

d
2
−i∞

d∆

2πi
Cac(∆, ρ)G

(ac)
O (xi),

Cac(∆, ρ) ≡ Iab(∆, ρ)S(O3O4[Õ†])bc. (2.51)

The block G
(ac)
O now decays exponentially in the right half-∆ plane, so we can deform the

contour in that direction. If Cac(∆, ρ) is meromorphic in this half-plane, with only simple

poles on the positive real axis, then we obtain a discrete sum of conformal blocks

〈O1 · · · O4〉 =
∑

∆∗,ρ∗

Pac(∆∗, ρ∗)G
(ac)
O∗ (xi),

Pac(∆∗, ρ∗) = −Res∆→∆∗Cac(∆, ρ∗). (2.52)

In deforming the contour from the principal series, one encounters spurious poles that

cancel in various ways [21, 28, 39]. We will see some explicit examples below.

2.8 Mean field theory

Having developed this technology, it is almost trivial to decompose a Mean Field Theory

(MFT)17 four-point function into conformal partial waves. The four-point function and its

partial wave decomposition are given by18,19

〈O1(x1)O2(x2)O†1(x3)O†2(x4)〉 = 〈O1(x1)O†1(x3)〉〈O2(x2)O†2(x4)〉

=
∑
ρ

∫ d
2

+i∞

d
2

d∆

2πi
IMFT
ab (∆, ρ)Ψ

(ab)
∆,ρ (xi). (2.53)

Applying the Euclidean inversion formula (2.40), we have

IMFT
ab (∆, ρ)

µ(∆, ρ)

(
〈O1O2O〉(a), 〈Õ†1Õ

†
2Õ
†〉(c)

)(
〈O†1O

†
2Õ
†〉(b), 〈Õ1Õ2O〉(d)

)
=
(
〈O1(x1)O†1(x3)〉〈O2(x2)O†2(x4)〉,Ψ(cd)

Õ†

)
=

∫
ddx1 · · · ddx5

vol SO(d+ 1, 1)
〈O1(x1)O†1(x3)〉〈O2(x2)O†2(x4)〉

× 〈Õ†1(x1)Õ†2(x2)Õ†(x5)〉(c)〈Õ1(x3)Õ2(x4)O(x5)〉(d)

=

∫
ddx1d

dx2d
dx5

vol SO(d+ 1, 1)
〈Õ†1(x1)Õ†2(x2)Õ†(x5)〉(c)〈S[Õ1](x1)S[Õ2](x2)O(x5)〉(d)

=
(
〈Õ†1Õ

†
2Õ
†〉(c), 〈S[Õ1]S[Õ2]O〉(d)

)
. (2.54)

17AKA Generalized Free Field Theory.
18When the operators O1,O2 are identical, there is an additional contribution to the four-point function

with 3 ↔ 4. This is straightforward to deal with in the same way. If instead O1 = O†2 then there is a

contribution with 2 ↔ 3, which simply gives the contribution of the identity operator in O1O2 OPE. If

O1 = O2 = O†2, then both contribution are present.
19For fermions there can be extra (−) signs.
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Above, we recognize the integrals over x3, x4 as shadow transforms and the remaining

integral as a three-point pairing. (We can act with the shadow transform on either Õ†1
or Õ1, and similarly for O2. Above, we made an arbitrary choice.) Diagrammatically we

have, starting from (2.41),

O1

O2

O3

O4

=

O1

O2

O†1

O†2

,

O1

O2

O†1

O†2
O

c d =

O1

O2

O†1

O†2
O

c d =

O1

O2

Õ1

Õ2

O

c d .

(2.55)

It is indeed easy to identify two shadow transforms (2.10) and a pairing (2.12) of three-point

functions in the last diagram.

By performing the shadow transforms in some order, we can write the above in terms

of shadow coefficients. In doing so, one of the three-point pairings cancels, and we obtain

IMFT
ab (∆, ρ)

µ(∆, ρ)

(
〈O†1O

†
2Õ
†〉(b), 〈Õ1Õ2O〉(d)

)
= S([Õ1]Õ2O)deS(O1[Õ2]O)ea. (2.56)

Because the three-point pairing is nondegenerate, the above formula determines IMFT
ab .

Alternatively, doing the shadow transforms in a different way, we could write

IMFT
ab (∆, ρ)

µ(∆, ρ)

(
〈O1O2O〉(a), 〈Õ†1Õ

†
2Õ
†〉(c)

)
= S([Õ†1]Õ†2Õ

†)ceS(O†1[Õ†2]Õ†)eb. (2.57)

Essentially this way of computing MFT OPE coefficients was used (for scalar operators)

in [25], where it was called “conglomeration”. Here, we have generalized this method

to arbitrary operator representations and highlighted the role of the Plancherel measure,

shadow transform, and three-point pairings, thus making precise contact with harmonic

analysis [26].20 We are still left with the question of determining these quantities, which is

what we turn to next.

3 Harmonic analysis and weight-shifting operators

3.1 Weight-shifting operators review

A weight-shifting operator [36] is a conformally-covariant differential operator

DA : [∆, ρ]→ [∆′, ρ′]. (3.1)

20Our approach also removes the need for prescriptions involving Γ(0) which were needed in [25].
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Acting on a structure for an operator O with weights [∆, ρ], it produces a new structure for

an operator O′ with weights [∆′, ρ′]. It also possesses a free index A = 1, . . . , dimW for a

finite-dimensional representation W of the conformal group SO(d+1, 1). In general, a pair

of representations O,O′ may be connected by multiple weight-shifting operators with the

same W , so we use a label a to index the possible choices, D(a)A. As in [36], we will use the

following pictorial representation for the action of a weight-shifting differential operator

D(a)A = a

O

O′

W . (3.2)

In diagrams where a weight-shifting operator is placed on a leg which is contracted between

two structures (such as right-hand side in (2.6)), we will assume that the operator is acting

on the structure from which the arrow is outgoing. For example, if we put a weight-shifting

operator on the internal line in the right-hand side of (2.6), it should be interpreted as acting

on the left conformally-invariant structure.

Weight-shifting operators can be used very generally to relate quantities associated

to different conformal representations. For example, they can be used to write confor-

mal blocks for general conformal representations as derivatives of conformal blocks for

scalars [36]. In this section, we will see that they are an efficient tool for computing

quantities in harmonic analysis.

As an example, let us describe weight-shifting operators for W = � (the vector rep-

resentation of SO(d + 1, 1)). Using the embedding space formalism of [45], we represent

a symmetric traceless tensor operator as a homogeneous function O(X,Z) of coordinates

X,Z ∈ Rd+1,1 such that X2 = X ·Z = Z2 = 0, with gauge invariance under Z → Z + βX.

It has homogeneity

O(λX,αZ) = λ−∆αJO(X,Z), (3.3)

where ∆, J are the dimension and spin of O. The dictionary between embedding-space

operators and operators on Rd is

O(X,Z) = (X+)−∆O
(
x =

X

X+
, z = Z − Z+

X+
X

)
,

O(x, z) = O
(
X = (1, x2, x), Z = (0, 2x · z, z)

)
. (3.4)

Here, z ∈ Cd is an auxiliary null polarization vector, and we are using index-free notation

f(x, z) = fµ1···µJ (x)zµ1 · · · zµJ . (3.5)
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The simplest weight-shifting operators for W = � are

D−0
m = Xm,

D0−
m =

(
(∆− d+ 2− J)δnm +Xm

∂

∂Xn

)(
(d− 4 + 2J)

∂

∂Zn
− Zn

∂2

∂Z2

)
,

D0+
m = (J + ∆)Zm +XmZ ·

∂

∂X
,

D+0
m = c1

∂

∂Xm
+ c2Xm

∂2

∂X2
+ c3Zm

∂2

∂Z · ∂X
+ c4Z ·

∂

∂X

∂

∂Zm

+ c5XmZ ·
∂

∂X

∂2

∂Z · ∂X
+ c6ZmZ ·

∂

∂X

∂2

∂Z2
+ c7Xm

(
Z · ∂

∂X

)2 ∂2

∂Z2
, (3.6)

where the coefficients ci are given in [36]. Here m = 0, . . . , d+1 is a vector index for SO(d+

1, 1). The superscripts indicate how the operators shift dimension and spin, respectively:

Dαβm : [∆, J ]→ [∆ + α, J + β]. (3.7)

For example, D−0 is a zeroth-order differential operator that simply multiplies by Xm.

This increases the homogeneity in X by 1 and does not affect the homogeneity in Z. Thus

it shifts [∆, J ] → [∆ − 1, J ]. The representation W = � possesses other weight-shifting

operators that produce non traceless-symmetric representations. These will play a role in

section 3.3.

In 4d, one uses a specialized embedding formalism [33, 37, 46, 47] that efficiently

describes all Lorentz representations. 4d operators O are encoded into functions on the 6d

embedding space denoted by

O(`,¯̀)
∆ (p), p ≡ (X,S, S), (3.8)

where Xm (m = 1 . . . 6) is the 6d embedding space coordinate, and Sa and S
a

(a = 1 . . . 4)

are 6d spinors. The lower and upper indices a denote the fundamental representation and

its dual of the SU(2, 2) conformal group.21 (They should not be confused with the general

Lorentz indices or tensor structure labels used in section 2.) The operators (3.8) satisfy

the homogeneity property

O(λX,αS, ᾱS) = λ−κα`ᾱ
¯̀O(X,S, S̄),

κ ≡ ∆ +
`+ ¯̀

2
. (3.9)

Instead of Xm we often use the following antisymmetric objects

Xab ≡ XmΣm
ab, X

ab ≡ XmΣ
mab

, (3.10)

where the 6d Σ-matrices are defined for example in appendix B of [37].

21Note that SU(2, 2) is the real form of the 4d conformal group in Lorentzian signature, whereas most of

our discussion has focused on Euclidean signature. The distinction between signatures is not important for

weight-shifting operators because they are finite-order differential operators with polynomial coefficients,

which can be trivially analytically continued between signatures.
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In 4d there are two fundamental sets of weight-shifting operators that generate all

others [36]. The first set associated to the fundamental representation of SU(2, 2) is

Da−0+ ≡ S
a
,

Da−0− ≡ X
ab
∂S̄,b,

Da++0 ≡ ā∂
ab
Sb + S

a
(S∂∂S̄),

Da+−0 ≡ b̄c∂aS + b̄S
a
(∂S∂S̄) + cXbc∂

ab
∂cS − S

a
(Xbc∂

bd
∂cS∂S̄,d). (3.11)

The second set associated to the dual representation is

D−+0
a ≡ Sa,

D−−0
a ≡ Xab∂

b
S ,

D+0+
a ≡ a∂abS

b
+ Sa(S∂∂S),

D+0−
a ≡ bc∂S̄,a + bSa(∂S̄∂S) + cX

bc
∂ab∂S̄,c − Sa(X

bc
∂bd∂S̄,c∂

d
S). (3.12)

In the above, we assumed that the weight-shifting differential operators act on a generic

operator (3.8) in the representation [∆, `, ¯̀]. We have also used the following short-hand

notation for derivatives

∂S̄,a ≡
∂

∂S
a , ∂aS ≡

∂

∂Sa
, ∂ab ≡ ΣM

ab

∂

∂XM
, ∂

ab ≡ Σ
M ab ∂

∂XM
. (3.13)

The parameters depend on the spins (`, ¯̀) and the homogeneity degree (3.9) as

a≡ 1−κ+`, ā≡ 1−κ+¯̀, b= 2(¯̀+1), b̄≡ 2(`+1), c≡−2+κ−`− ¯̀. (3.14)

3.2 Recursion relations for the Plancherel measure

As a first application of weight-shifting operators, let us compute the Plancherel measure

for SO(d+ 1, 1). Our strategy will be to derive a recursion relation for µ(∆, ρ) that allows

us to shift [∆, ρ] by the weights of finite-dimensional representations of SO(d+ 1, 1).

As a base case, consider the Plancherel measure for scalars. Via (3.17) it is related

to the square of the shadow transform N (∆, 0). This is particularly simple to compute in

Fourier space, where the shadow transform acts by multiplication. Note that∫
ddx

1

x2∆
e−ipx =

πd/22d−2∆Γ(d2 −∆)

Γ(∆)
p2∆−d. (3.15)

Thus, in Fourier space

S2 = N (∆, 0) =
πdΓ(d2 −∆)Γ(∆− d

2)

Γ(∆)Γ(d−∆)
. (3.16)

Using (2.30), we have

µ(∆, 0) =
1

2dN (∆, 0) vol SO(d)
. (3.17)
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We can derive a recursion relation for µ(∆, ρ) as follows. Note first that a weight-

shifting operator D in the trivial representation W = • must be proportional to the identity

when ∆ is generic. The reason is that D is a conformally-invariant map from a generic

conformal representation V∆,ρ to itself. The claim follows by irreducibility of V∆,ρ for

generic ∆ and Schur’s lemma.

Consider now a pair of weight-shifting operators associated to W and its dual W ∗ that

map between conformal representations O and O′.

D(a)A : O → O′,

D(b)
A : O′ → O. (3.18)

Taking the product and contracting the SO(d+ 1, 1) indices, the result is a weight-shifting

operator associated to the trivial representation, which must be a constant

D(b)
A D

(a)A =

(
O
O′ W

)ba
. (3.19)

We call the quantity on the right-hand side a “bubble coefficient” because it corresponds

to a bubble of O′ and W in the diagrammatic notation,

(
O
O′ W

)ba
O O = O O

W

O′
a b . (3.20)

Taking the trace of both sides and using cyclicity of the trace, we find(
O
O′ W

)ba
TrO(1) = TrO(D(b)

A D
(a)A) = TrO′(D(a)AD(b)

A ) =

(
O′

O W ∗

)ab
TrO′(1). (3.21)

Dividing by vol SO(d+ 1, 1) and using the definition (2.25), we conclude(
O
O′ W

)ba
µ(O) =

(
O′

O W ∗

)ab
µ(O′). (3.22)

Diagrammatically, we interpret this recursion relation as reflecting the consistency of the

two possible ways of closing the bubble in the diagram

ba

O

O′

W
. (3.23)

The recursion relation (3.22) is both a practical tool for computing µ(O) and also an

interesting statement about the algebra of weight-shifting operators.
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3.2.1 Example: traceless symmetric tensors

Let us apply the recursion relation (3.22) to traceless symmetric tensors using the weight-

shifting operators (3.6). It is straightforward to compute bubble coefficients by applying

D(b)
A D(a)A to any conformally-invariant structure. For example, we can choose the standard

conformally-invariant two-point function, which in the embedding space takes the form

〈O(X1, Z1)O(X2, Z2)〉 =
HJ

12

X∆+J
12

,

H12 ≡ −2((X1 ·X2)(Z1 · Z2)− (X1 · Z2)(X2 · Z1)),

Xij ≡ −2Xi ·Xj . (3.24)

Using the dictionary (3.4), this reduces to the standard convention in Rd

〈Oµ1···µJ (x1)Oν1···νJ (x2)〉 =
I(µ1

(ν1
(x12) · · · IµJ )

νJ )(x12)− traces

x2∆
12

Iµν(x) = δµν − 2
xµxν
x2

. (3.25)

Applying spin-shifting operators D0±
m , we find(

[∆,J ]

[∆,J−1] �

)(0+)(0−)

=−J(d+2J−4)(∆+J−2)(d−∆+J−2),

(
[∆,J−1]

[∆,J ] �

)(0−)(0+)

=−(d+J−3)(d+2J−2)(∆+J−1)(d−∆+J−1), (3.26)

which gives the recursion relation

µ(∆, J) =
(d+ J − 3)(d+ 2J − 2)(∆ + J − 1)(d−∆ + J − 1)

J(d+ 2J − 4)(∆ + J − 2)(d−∆ + J − 2)
µ(∆, J − 1). (3.27)

The solution with base case (3.17) is

µ(∆, J) =
1

N (∆, ρ)

dim(ρJ)

2d vol SO(d)
,

dim(ρJ) =
Γ(J + d− 2)(2J + d− 2)

Γ(J + 1)Γ(d− 1)
,

N (∆, J) =
πdΓ(∆− d

2)Γ(d2 −∆)

Γ(∆− 1)Γ(d−∆− 1)(∆ + J − 1)(d−∆ + J − 1)
. (3.28)

Here, dim(ρJ) is the dimension of a spin-J representation of SO(d). Note that in our

convention for the two-point function (3.25), this is the same as

〈Oµ1···µJ (0)Oν1···νJ (∞)〉〈Õν1···νJ (∞)Õµ1···µJ (0)〉 = dim(ρJ). (3.29)

(This follows because the numerator of the two-point function (3.25) is simply the action of

I ⊗ · · · ⊗ I in ρJ ⊂ SymJ(�), where I is a reflection. Equation (3.29) follows from I2 = 1.)

Thus, N (∆, J) in (3.28) is S2 acting on a symmetric traceless tensor with dimension ∆

and spin J .

One can additionally derive a recursion relation using dimension-shifting operators and

verify that the expression (3.28) obeys it.
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3.2.2 Example: general irreps in 4d

All the simplest bubble coefficients in 4d are summarized in appendix C.3.3. We use them

and the recursion relation (3.22) to write

µ(∆, `, ¯̀) = B4(∆ + 1/2, ¯̀− 1, `) B−1
1 (∆, `, ¯̀)× µ(∆ + 1/2, `− 0, ¯̀− 1), (3.30)

µ(∆, `, ¯̀) = B2(∆− 1/2, ¯̀, `− 1) B−1
3 (∆, `, ¯̀)× µ(∆− 1/2, `− 1, ¯̀− 0). (3.31)

The solution to the recursion relation (3.30) and (3.31) with the base case (3.17) is given by

µ(∆, `, ¯̀) =
1

N (∆, `, ¯̀)
× (−1)`+

¯̀×dim(`, ¯̀)

16 volSO(4)
, (3.32)

dim(`, ¯̀) = (1+`)(1+¯̀), (3.33)

N (∆, `, ¯̀) =
(−1)`+

¯̀×π4(
∆−2+ `−¯̀

2

)(
2−∆+ `−¯̀

2

)(
∆+ `+¯̀

2 −1
)(

4−∆+ `+¯̀

2 −1
) . (3.34)

In writing these relation we have used (C.102) and (C.103). As a consistency check we

have also explicitly computed the square shadow coefficient in (C.99). The results of indi-

rect (3.34) and direct (C.99) computations perfectly coincide. They also coincide with the

one in (3.28) for d = 4 and ` = ¯̀= J .

3.3 Plancherel measure for general representations

In this section we use the recursion relation (3.22) to compute µ(∆, ρ) for general SO(d)

representations ρ. We will use weight-shifting operators that transform in the vector rep-

resentation of the conformal group and shift only the SO(d) weights ρ. In principle, the

Plancherel measure is known in general [26, 38]. The purpose of this section is to give an ele-

mentary derivation and clarify certain subtleties associated with fermionic representations.

3.3.1 Weight-shifting operators

Following the notation of [48], we represent an SO(d) weight as ρ = md, a vector of n

integers or half-integers. In even dimensions d = 2n and we have

md,1 ≥ md,2 ≥ . . . ≥ md,n−1 ≥ |md,n−1| ≥ 0, (3.35)

while in odd dimensions d = 2n+ 1 and

md,1 ≥ md,2 ≥ . . . ≥ md,n−1 ≥ md,n−1 ≥ 0. (3.36)

When md consists of integers, its entries can be thought of as defining the lengths of the

rows in the Young diagram of ρ.22 According to the discussion in [36], the vector weight-

shifting operators can change a single md,i by ±1. We denote the resulting representations

by md(±i).
22The precise relation of md,i to Dynkin labels can be found e.g. in [48].
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Suppose O has scaling dimension ∆ and spin md. Then the weight-shifting operator

DA
±i that turns it into an operator with spin md(±i) has the form

eA ⊗ (DA
±iO)a(x) = πab µ(∂µw(x)⊗Ob(x) + α±i(∆,md)w(x)⊗ ∂µOb(x)), (3.37)

where w(x) = wA(x)eA, eA are basis elements of the vector representation of SO(d+ 1, 1)

and wA(x) are the conformal Killing scalars of dimension −1 [36].23 Moreover, πab µ gives the

Clebsch-Gordan coefficient for md(±i) ∈md⊗ .24 This is the most general expression, up

to a multiple, which has the correct scaling and SO(d) transformation properties, according

to the rules described in [36]. In this expression, we have a single undetermined coefficient

α±i(∆,md), which is fixed by the requirement that (3.37) is primary,

(Kν ⊗ 1 + 1⊗Kν) ·
(
eA ⊗ (DA

±iO)a(0)
)

= 0. (3.38)

By recalling that ∂µw(0) = Pµ · w(0) and similarly for O, and using the commutation

relations of conformal group25 we find

0 = πab µ([Kν , P
µ] · w(0)⊗Ob(0) + α±i(∆,md)w(0)⊗ [Kν , P

µ] · Ob(0))

= 2(α±i(∆,md)∆− 1)πab νw(0)⊗Ob(0) + 2α±i(∆,md)π
a
b µ(Sν

µ)bcw(0)⊗Oc(0), (3.39)

where (Sνµ)bc are the generators of rotations in the representation md. From the index

structure, we must have

πab µ(Sν
µ)bc = −(md |md(±i))πac ν (3.40)

for some coefficient (md |md(±i)). We thus have

α±i(∆,md) =
1

∆− (md |md(±i))
. (3.41)

It was observed in appendix B.4 of [48] that

(md |md(+i)) = −md,i + i− 1, (3.42)

(md |md(−i)) = md,i + d− i− 1. (3.43)

3.3.2 Bubble coefficients

Let us now compute the bubble coefficients. First, we compute the composition

eB⊗eA⊗(DB
∓iD

A
±iO(x))a =

=πabνπ
b
cµ [∂νw(x)⊗∂µw(x)⊗Oc(x)+α±i(∆,md)∂

νw(x)⊗w(x)⊗∂µOc(x)

+α∓i(∆,md(±i))(w(x)⊗∂ν∂µw(x)⊗Oc(x)+w(x)⊗∂µw(x)⊗∂νOc(x))

+α∓i(∆,md(±i))α±i(∆,md)w(x)⊗∂νw(x)⊗∂µOc(x)

+α∓i(∆,md(±i))α±i(∆,md)w(x)⊗w(x)⊗∂ν∂µOc(x)] . (3.44)

23In embedding space language, we have wA(x) = XA.
24Note that there are no multiplicities in this tensor product, so π is determined uniquely up to a phase.
25In this section we use conventions of [48].
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We now contract the indices on the operators by replacing eB⊗eA → ηAB, where ηAB is the

metric in Rd+1,1. This amounts to the substitution w(x)⊗w(y)→ −1
2(x−y)2 which yields

(D∓i,AD
A
±iO(x))a = δµνπab µπ

b
c ν [1− α∓i(∆,md(±i))]Oc(x). (3.45)

One can check that in the normalization of CG coefficients as in [48] we have

δµνπab µπ
b
c ν =

√
1

d

dim md(±i)
dim md

δac . (3.46)

This implies that the bubble coefficient is given by(
[∆,md]

[∆,md(±i)]

)
=

√
1

d

dim md(±i)
dim md

∆− (md(±i) |md)− 1

∆− (md(±i) |md)
. (3.47)

3.3.3 Recursion relation

Given the bubble coefficients which we found above, we can conclude from (3.22)

µ(∆,md(+i)) =

(
[∆,md]

[∆,md(+i)]

)(
[∆,md(+i)]

[∆,md]

)−1

µ(∆,md)

=
dim md(+i)

dim md

d−∆ +md,i − i+ 1

d−∆ +md,i − i
∆ +md,i − i+ 1

∆ +md,i − i
µ(∆,md). (3.48)

In particular if we set i = 1 and let md be a traceless-symmetric irrep, we find

µ(∆, J) =
(J + d− 3)(2J + d− 2)

J(2J + d− 4)

d−∆ + J − 1

d−∆ + J − 2

∆ + J − 1

∆ + J − 2
µ(∆, J − 1), (3.49)

in full agreement with (3.27).

For bosonic representations the solution to the general recursion relation is given by

µ(∆,md) = dim md

n∏
i=1

(∆ +md,i − i)
(∆− i)

(d−∆ +md,i − i)
(d−∆− i)

µ(∆, 0), (3.50)

where µ(∆, 0) is the Plancherel measure for scalar representations given by (3.17). For

fermionic representations we have

µ(∆,md) =
dim md

dimS

n∏
i=1

(∆ +md,i − i)
(∆ + 1

2 − i)
(d−∆ +md,i − i)

(d−∆ + 1
2 − i)

µ(∆, S), (3.51)

where S is the spinor representation with all md,i = 1
2 . We compute µ(∆, S) in appendix B.

Let us now substitute µ(∆, 0) and µ(∆, S) into the above expressions.

In even dimensions, d = 2n, we have

µ(∆, 0) = (−1)n
(

∆− d

2

)
(∆ + 1− d)d−1

1

(2π)d vol SO(d)
, (3.52)

µ(∆, S) = (−1)n
(

∆ +
1

2
− d
)
d

dimS

(2π)d vol SO(d)
. (3.53)
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We then find that the general Plancherel measure for d = 2n is given by

µ(∆,md) =
dim md

(2π)d vol SO(d)

n∏
i=1

(∆ +md,i − i)(d−∆ +md,i − i). (3.54)

In odd dimensions, d = 2n+ 1, we have

µ(∆, 0) = (−1)n
(

∆− d

2

)
(∆ + 1− d)d−1

cotπ∆

(2π)d vol SO(d)
, (3.55)

µ(∆, S) = (−1)n+1

(
∆ +

1

2
− d
)
d

dimS tanπ∆

(2π)d vol SO(d)
, (3.56)

and we find the general Plancherel measure for d = 2n+ 1

µ(∆,md) =
dimmd

(2π)dvolSO(d)

(
∆− d

2

)
cotπ(∆−md,1)

n∏
i=1

(∆+md,i−i)(d−∆+md,i−i).

(3.57)

Note that we have cot π(∆ − md,1) = cotπ∆ for bosonic irreps and cot π(∆ − md,1) =

− tanπ∆ for fermionic irreps.

In order to compare to the formulas in [26], let us recall the expression for dim md.

For that, define pi = md,n−i+1 + i− 1 and qi = i− 1 for even d = 2n, pi = md,n−i+1 + i− 1
2

and qi = i− 1
2 for odd d = 2n+ 1. We then have

dim m2n =
∏

1≤i<j≤n

p2
j − p2

i

q2
j − q2

i

, (3.58)

dim m2n+1 =

n∏
i=1

pi
qi

∏
1≤i<j≤n

p2
j − p2

i

q2
j − q2

i

. (3.59)

If we write ∆ = d
2 + c we find

n∏
i=1

(∆ +md,i − i)(d−∆ +md,i − i) =
n∏
i=1

(p2
i − c2) (3.60)

and we can now recognize formulas (8.6) and (8.17b) of [26].26

3.3.4 Compact expression

Finally, let us give a compact expression for the Plancherel measure. For that, we first

define an SO(d+ 2) weight

md+2 = (−∆,md,1, . . . ,md,n). (3.61)

26We have pi = ni in even d or pi = `i + i− 1
2

in odd d in their notation. For fermionic representations in

odd d (8.17b) of [26] should be modified by replacing tan πc with − cotπc in order to agree with our (3.57).

We believe our formula (3.57) is correct in these cases since it is consistent with the 3d results obtained in

section 4.2.1 by two independent methods. Also, see (79) in [49] for µ = 0 and µ = 1
2
.
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We then have

µ(∆,md) = (−1)n2π
dim md+2

vol SO(d+ 2)
(d = 2n),

µ(∆,md) = (−1)n+12π
dim md+2

vol SO(d+ 2)
cotπ(∆−md,1) (d = 2n+ 1). (3.62)

In the above formulas dim md+2 should be interpreted as a formal rational function given

by (3.58) and (3.59). Note the similarity between these expressions and the Plancherel

measure for a compact group G,

µ(π) =
dimπ

volG
. (3.63)

It is not hard to understand why the Plancherel measure for SO(d+1, 1) is proportional to

dim md+2. Indeed, we should be able to use weight-shifting operators to compute recursion

relations for the Plancherel measure of the compact group SO(d + 2). These recursion

relations will be identical to what we have found above. It then follows that the ratio of

the Plancherel measures for SO(d + 2) and SO(d + 1, 1) should be invariant under shifts

by weights of so(d+ 2), which is precisely what we observe. In fact, this reasoning can be

used to fix the formulas (3.62) from the answer for scalars and fermions without explicitly

computing the weight-shifting operators DA
±i.

We expect that similar reasoning should hold for the Plancherel measure with respect

to other real forms of so(d+ 2), and indeed for different real forms of arbitrary Lie groups.

Specifically, the ratio between Plancherel measures for different real forms of g (analytically

continued appropriately in the weights) should be invariant under shifts by weights of g.

3.4 Integration by parts and shadow coefficients

To compute shadow coefficients and three-point pairings, we must understand how to

integrate weight-shifting operators by parts. Recall the natural pairing between operators

(Õ†,O) =

∫
ddx Õ†(x)O(x). (3.64)

Given a weight-shifting operator D : O → O′ in the representation W (we suppress its

W -index for brevity), there exists an adjoint D∗ : Õ′† → Õ† in the same representation W

such that

(Õ′†,DO) = (D∗Õ′†,O). (3.65)

Note that D is always a finite-order differential operator with polynomial coefficients, so

D∗ can be computed straightforwardly by integrating by parts in each term. The fact that

D∗ is a weight-shifting operator follows from conformal invariance of the pairing.

Integration by parts is useful for computing pairings between two- and three-point

structures, as we show via examples in appendix C.5. Although this is in principle simply

a matter of contracting indices, weight-shifting operators can help organize the computation

efficiently.
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With the ability to integrate by parts, we can also commute weight-shifting operators

past shadow transforms. We have

SDO(x) =

∫
ddy〈Õ′(x)Õ′†(y)〉DO(y)

=

∫
ddy〈Õ′(x)(D∗Õ′†)(y)〉O(y)

=

∫
ddy〈(D′Õ′)(x)Õ†(y)〉O(y)

= D′SO(x). (3.66)

Here, D′ is a weight-shifting operator determined by solving the “crossing equation”

〈Õ′(x)(D∗Õ′†)(y)〉 = 〈(D′Õ′)(x)Õ†(y)〉, (3.67)

which is a linear equation in a finite-dimensional space of conformally-covariant two-point

structures. The coefficients relating D∗ and D′ are examples of 6j symbols [36]. They can

be computed by simply evaluating both sides of (3.67).

From representation theory point of view, the shadow transform S implements a par-

ticular affine Weyl reflection of the conformal group SO(d + 1, 1) (see [31] for a recent

discussion in the context of CFT). On the other hand, each weight-shifting operator D
shifts the weights of the primary it is acting on by some weight µ. It is easy to see that

D′ shifts by Sµ, where the action of the Weyl group is interpreted in the usual (not affine)

sense. This extends to other affine Weyl transforms which exist in Lorentzian signature [31].

Finally, by commuting weight-shifting operators past shadow transforms, we can ef-

ficiently derive recursion relations for shadow coefficients. This leads to much simpler

calculations than in previous cases, e.g. [26, 33, 50, 51]. We will see several examples below.

3.4.1 Example: traceless symmetric tensors

Integration by parts. To integrate the operators (3.6) by parts, we translate from the

embedding space to Rd using the dictionary (3.4). Integration by parts proceeds in the

usual way for x-derivatives. Dealing with the polarization vector z takes more care. A

contraction between two traceless symmetric tensors can be written as [45]

f · g = fµ1···µJ g
µ1···µJ =

1

J !(h− 1)J
f(D)g(z) =

1

J !(h− 1)J
g(D)f(z). (3.68)

Here, we use index-free notation f(z) = fµ1···µJ zµ1 · · · zµJ and similarly for g(z). The

Thomas/Todorov operator D is given by

Dµ =

(
h− 1 + z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z2
, (3.69)

with h = d
2 . Now suppose f(z) has spin-(J + 1) and g(z) has spin-J . By symmetry of the

pairing (3.68), we have

f · (zµg) =
1

(J + 1)!(h− 1)J+1
g(D)Dµf(z)

=
1

(J + 1)(h− 1 + J)
g ·Dµf, (3.70)
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(Here we have also used that [Dµ, Dν ]=0.) Thus, the adjoint of z under the pairing (3.68) is

z∗|J =
1

(J + 1)(h− 1 + J)
Dz|J+1, (3.71)

where |J indicates that the operator acts on a spin-J representation.

Applying these results to the weight-shifting operators (3.6), we find

(D−0|∆,J)∗ = D−0|d−∆+1,J ,

(D0−|∆,J)∗ = −2J(h− 2 + J)D0+|d−∆,J−1,

(D0+|∆,J)∗ = − 1

2(J + 1)(h− 1 + J)
D0−|d−∆,J+1,

(D+0|∆,J)∗ = D+0|d−∆−1,J , (3.72)

where D|∆,J indicates that D acts on a multiplet with weights ∆, J . Following the compu-

tation (3.66), we find

SD0+|[∆,J ] =
∆ + J − 1

d−∆ + J
D0+S|[∆,J ]. (3.73)

Shadow coefficients for scalar-scalar-spin-J . Let us apply these results to compute

shadow coefficients for the scalar-scalar-spin-J three-point structure (2.16). In the embed-

ding space, this structure is given by

〈φ∆1(X1)φ∆2(X2)O∆3,J(X3, Z3)〉 =
V J

3,12

X
∆1+∆2−∆3

2
12 X

∆2+∆3−∆1
2

23 X
∆1+∆3−∆2

2
13

,

V3,12 = −2
(Z3 ·X1)(X2 ·X3)− (Z3 ·X2)(X1 ·X3)

X
1/2
12 X

1/2
23 X

1/2
13

. (3.74)

In the case J = 0, the shadow transform of any of the operators is given by the classic

star-triangle formula [34, 35]

〈φ∆1φ∆2S[φ∆3 ]〉 =

∫
ddx3

1

(x′3 − x3)2(d−∆3)

1

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

=
π
d
2 Γ(∆3 − d

2)Γ( ∆̃3+∆1−∆2
2 )Γ( ∆̃3+∆2−∆1

2 )

Γ(d−∆3)Γ(∆3+∆1−∆2
2 )Γ(∆3+∆2−∆1

2 )
〈φ∆1φ∆2φ∆̃3

〉. (3.75)

To study nonzero J , we use weight-shifting operators to relate three-point structures with

different spins,27

〈(D−0φ∆1)φ∆2(D0+O∆3,J)〉 = −1

2
(∆1 − J −∆2 −∆3)〈φ∆1−1φ∆2O∆3,J+1〉. (3.76)

Here, we have chosen to act with a particular combination of weight-shifting operators, but

other choices are possible. The operators D−0 and D0+ each have a free vector index for

SO(d + 1, 1), and we are implicitly contracting those indices. From (3.76) we will derive

recursion relations for shadow coefficients.
27The trick of using differential operators to produce spinning three-point structures from scalar structures

was originally described in [52].
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Shadow transforming the scalar. Let us first consider the shadow transform of the scalar

φ∆2 . This is quite easy because our differential operators (which act only on points 1 and

3) simply commute with S acting on point 2,

S(φ∆1 [φ∆2 ]O∆3,J)〈φ∆1φ∆̃2
O∆3,J〉

= 〈φ∆1S[φ∆2 ]O∆3,J〉
= −2(∆1 + 2− J −∆2 −∆3)−1〈(D−0φ∆1+1)S[φ∆2 ](D0+O∆3,J−1)〉
= −2(∆1 + 2− J −∆2 −∆3)−1S(φ∆1+1[φ∆2 ]O∆3,J−1)〈(D−0φ∆1+1)φ

∆̃2
(D0+O∆3,J−1)〉

=
∆1 + 2− J − ∆̃2 −∆3

∆1 + 2− J −∆2 −∆3
S(φ∆1+1[φ∆2 ]O∆3,J−1)〈φ∆1φ∆̃2

O∆3,J〉. (3.77)

In other words,

S(φ∆1 [φ∆2 ]O∆3,J) =
∆1 + 2− J − ∆̃2 −∆3

∆1 + 2− J −∆2 −∆3
S(φ∆1+1[φ∆2 ]O∆3,J−1). (3.78)

Using (3.75) as a base-case, this is solved by

S(φ∆1 [φ∆2 ]O∆3,J) =
π
d
2 Γ(∆2 − d

2)Γ( ∆̃2+∆1−∆3+J
2 )Γ( ∆̃2+∆3−∆1+J

2 )

Γ(d−∆2)Γ(∆2+∆1−∆3+J
2 )Γ(∆2+∆3−∆1+J

2 )
. (3.79)

Shadow transforming the tensor. To derive a recursion relation for the shadow trans-

form of the tensor operator, we can follow exactly the same computation. The only new

ingredient is that we must use (3.73) to commute D0+ past S acting on O3. We find

S(φ∆1φ∆2 [O∆3,J ]) =
(∆1+2−J−∆2−∆̃3)(∆3+J−2)

(∆1+2−J−∆2−∆3)(∆̃3+J−1)
S(φ∆1+1φ∆2 [O∆3,J−1]). (3.80)

This is solved by

S(φ∆1φ∆2 [O∆3,J ]) =
π
d
2 Γ(∆3− d

2)Γ(∆3+J−1)Γ( ∆̃3+∆1−∆2+J
2 )Γ( ∆̃3+∆2−∆1+J

2 )

Γ(∆3−1)Γ(d−∆3+J)Γ(∆3+∆1−∆2+J
2 )Γ(∆3+∆2−∆1+J

2 )
. (3.81)

The results (3.79) and (3.81) for shadow coefficients agree with the more laborious direct

evaluation of star-triangle integrals, see e.g. appendix D of [23].

As a check of (3.79) and (3.81), note that S2 acts in the correct way in both cases

S(φ∆1 [φ∆2 ]O∆3,J)S(φ∆1 [φ
∆̃2

]O∆3,J) = N (∆2, 0),

S(φ∆1φ∆2 [O∆3,J ])S(φ∆1φ∆2 [O
∆̃3,J

]) = N (∆3, J), (3.82)

where N (∆, J) is given in (3.28).

3.4.2 Example: shadow coefficients in 4d

We describe the details of integration by parts in 4d in appendix C. Here, we use those

results to derive several examples of 4d shadow coefficients.
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Shadow coefficients for scalar-scalar-spin(`, `). Let us start by considering a three-

point function of two scalars and a spin-` operator, this time using the 4d embedding

formalism,

〈φ∆1 φ∆2 O
(`,`)
∆3
〉 ≡ K3

[
Ĵ3

12

]`
, (3.83)

Ĵkij ≡ X−1
ij (SkXiXjSk). (3.84)

Here, K3 is a standard product of dimensionful factors

K3 ≡
∏
i<j

X
−
κi+κj−κk

2
ij , (3.85)

where κ is the homogeneity degree defined in (3.9).

The structure (3.83) satisfies the following recursion relation

〈φ∆1 φ∆2 O
(`,`)
∆3
〉 = A−1

1 ×
(
D2
−0− ·D

−+0
3

)(
D3
−0+ ·D

+0+
2

)
〈φ∆1 φ∆2 O

(`−1,`−1)
∆3+1 〉, (3.86)

A1(∆1,∆2,∆3) ≡ (∆2 − 1)(∆1 + ∆2 −∆3 + `− 2). (3.87)

Applying the shadow transform S to both sides of (3.86), we obtain recursion relations

for the corresponding shadow coefficients. Let Si (i = 1, 2, 3) denote the shadow transform

of the operator in the i-th position. First consider S1. Trivially commuting S1 with all the

differential operators on the right-hand side of (3.86), we obtain

S([φ∆1 ]φ∆2O
(`,`)
∆3

) = A−1
1 (∆1,∆2,∆3)A1(∆̃1,∆2,∆3)× S([φ∆1 ]φ∆2O

(`−1,`−1)
∆3+1 ). (3.88)

The solution is

S([φ∆1 ]φ∆2O
(`,`)
∆3

) = π2 × Γ(∆1 − 2)

Γ(4−∆1)
×

Γ
(

∆̃1+∆23+`
2

)
Γ
(

∆̃1−∆23+`
2

)
Γ
(

∆1+∆23+`
2

)
Γ
(

∆1−∆23+`
2

) , (3.89)

which agrees with (3.79) after setting d = 4 and J = ` and exchanging ∆1 ↔ ∆2.

Next, we apply S3 to (3.86) and use the commutation relations (C.85) and (C.89) to

obtain

S(φ∆1φ∆2 [O(`,`)
∆3

]) =
(∆3−1)(2−∆3+∆12+`)(2−∆3−∆12+`)

4(∆3−2)(2−∆3+`)(3−∆3+`)
S(φ∆1φ∆2 [O(`−1,`−1)

∆3+1 ]).

This is solved by (3.81) with d = 4 and J = `. We provide the formula here again for

convenience

S(φ∆1φ∆2 [O(`,`)
∆3

]) =
π2

∆3 − 2
× Γ(∆3 + `− 1)

Γ(∆̃3 + `)
×

Γ
(

∆̃3+∆12+`
2

)
Γ
(

∆̃3−∆12+`
2

)
Γ
(

∆3+∆12+`
2

)
Γ
(

∆3−∆12+`
2

) . (3.90)
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Shadow coefficients for seeds structures. Now consider a more complicated case of

two different “seed” structures in 4d [53]

〈φ∆1 f
(p,0)
∆2
O(`, `+p)

∆3
〉 ≡ K3

[
Î32
]p [

Ĵ3
12

]`
, (3.91)

〈φ∆1 f
(0,p)
∆2
O(`, `+p)

∆3
〉 ≡ K3

[
K̂23

1

]p [
Ĵ3

12

]`
, (3.92)

K̂ij
k ≡ X

+1/2
ij X

−1/2
ik X

−1/2
jk (SiXkSj), (3.93)

where the tensor invariants Î32 and Ĵ3
12 are defined in (C.62) and (3.84). It should be

understood that φ = f (0,0) and thus both (3.91) and (3.92) reduce to (3.83) for p = 0. The

structures (3.91) and (3.92) satisfy the recursion relations

〈φ∆1 f
(p,0)
∆2
O(`,`+p)

∆3
〉 =

(
D3
−0+ ·D

−+0
2

)
〈φ∆1 f

(p−1,0)
∆2+1/2O

(`,`+p−1)
∆3+1/2 〉, (3.94)

〈φ∆1 f
(0,p)
∆2
O(`,`+p)

∆3
〉 = −2A−1

2 ×
(
D2
−0+ ·D

+0+
3

)
〈φ∆1 f

(0,p−1)
∆2+1/2O

(`,`+p−1)
∆3−1/2 〉, (3.95)

A2 ≡ (2∆3 + p− 4)(∆1 −∆2 + ∆3 + `+ p− 2). (3.96)

Applying S1 to (3.94) and trivially commuting the shadow transform with differential

operators, we find

S([φ∆1 ]f
(p,0)
∆2
O(`,`+p)

∆3
) = S([φ∆1 ]f

(p−1,0)
∆2+1/2O

(`,`+p−1)
∆3+1/2 ) = S([φ∆1 ]φ∆2+p/2O

(`,`)
∆3+p/2). (3.97)

The shadow coefficient in the very last equality is simply given by (3.89). Next, applying

S2 of (3.94), we find

S(φ∆1 [f
(p,0)
∆2

]O(`,`+p)
∆3

) = i× 2−∆2 + ∆13 + `+ p

6− 2∆2 + p
S(φ∆1 [f

(p−1,0)
∆2+1/2]O(`,`+p−1)

∆3+1/2 ), (3.98)

with solution

S(φ∆1 [f
(p,0)
∆2

]O(`,`+p)
∆3

) = (−i)p ×

(
∆̃2+∆13+`−p

2

)
p

(∆2 − 3− p/2)p
× S(φ∆1 [φ∆2+p/2]O(`,`)

∆3+p/2), (3.99)

where the shadow coefficient on the right-hand side is given by (3.89).

Finally, consider the structure (3.92). Applying S3 to both sides of (3.95), we find

S(φ∆1f
(0,p)
∆2

[O(`,`+p)
∆3

]) =−2i×∆3−3+p/2

∆3−2+p/2
× ∆3−2+`+p/2

∆3−2+∆12+`+p
S(φ∆1f

(0,p−1)
∆2+1/2[O(`,`+p−1)

∆3−1/2 ]),

which is solved by

S(φ∆1f
(0,p)
∆2

[O(`,`+p)
∆3

])

= (−i)p × ∆3 − 2− p/2
∆3 − 2 + p/2

(∆3 − 1 + `− p/2)p(
∆3+∆12+`−p

2

)
p

S(φ∆1φ∆2+p/2[O(`,`)
∆3−p/2]), (3.100)

where the shadow coefficient in the right-hand side is given by (3.90).
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Shadow coefficients for fermion-fermion-spin(`, `). We conclude by studying a

more complicated example of three-point functions with two tensor structures

〈ψ†∆1
ψ∆2 O

(`,`)
∆3
〉Ω = K3

(
λ1
〈ψ†ψO〉Î

12Ĵ3
12 + λ2

〈ψ†ψO〉Î
13Î32

) [
Ĵ3

12

]`−1
, (3.101)

〈ψ∆1 ψ∆2 O
(`,`)
∆3
〉Ω = K3

(
λ1
〈ψψO〉Î

31K̂23
1 + λ2

〈ψψO〉Î
32K̂13

2

) [
Ĵ3

12

]`−1
, (3.102)

〈ψ∆1 ψ
†
∆2
O(`,`)

∆3
〉Ω = K3

(
λ1
〈ψψ†O〉Î

21Ĵ3
12 + λ2

〈ψψ†O〉Î
23Î31

) [
Ĵ3

12

]`−1
. (3.103)

Here ψ and ψ† are fermions transforming in (1, 0) and (0, 1) spin representations. The sub-

script 〈· · ·〉Ω indicates a physical correlator, which is a linear combination of conformally-

invariant structures 〈· · ·〉(m) with OPE coefficients λm〈···〉. (Equations (3.101)–(3.103) should

be read as definitions of the structures 〈· · ·〉(m).) We assume that ` ≥ 1.28

First, we consider the three-point function (3.101). We define the following vector of

weight-shifting operators

D
(n)
12 ≡

(
D1
−0+ · D

−+0
2 , D+0+

1 · D2
++0

)
, n = 1, 2. (3.104)

We can then rewrite both tensor structures as

〈ψ†∆1
ψ∆2 O

(`,`)
∆3
〉(m) = Mm

12nD
(n)
12 〈φ∆1+3/2−n φ∆2+3/2−nO

(`,`)
∆3
〉, (3.105)

where the matrix of coefficients M is given by

Mm
12n ≡

(
1 0

(∆1+∆2+∆3−`−5)(∆1+∆2−∆3+`−1)
4 ` (∆3−1) − 1

4 ` (∆3−1) (∆1−3/2)(∆2−3/2)

)
. (3.106)

Applying the shadow transform S1 to both sides of (3.105), we get29

S([ψ†∆1
]ψ∆2O

(`,`)
∆3

)mn〈ψ∆̃1
ψ∆2O

(`,`)
∆3
〉(n)

=

2∑
n=1

Mm
12nD

′(n)
12 S1 〈φ∆1+3/2−nφ∆2+3/2−nO

(`,`)
∆3
〉. (3.107)

On the left-hand side, the tensor structures are defined in (3.102). On the right-hand side,

we have permuted the shadow transform with the differential operators which become

D
′(n)
12 ≡

(
C1(∆1+1/2,0,0)×D1

++0 ·D
2
−+0, −C3(∆1−1/2,0,0)×D−+0

1 ·D++0
2

)
. (3.108)

The coefficient C1 and C3 are given by (C.85) and (C.91) respectively. Applying the shadow

transform and taking differential operators in the right-hand side of (3.107), we obtain

2∑
n=1

S([φ∆1+3/2−n]φ∆2+3/2−nO
(`,`)
∆3

) Mm
12nN

n
r〈ψ∆̃1

ψ∆2O
(`,`)
∆3
〉(r), (3.109)

28In the special case ` = 0 both three-point functions have a single tensor structure.
29Note that in this expression n enters not only the indices of various objects, but also the scaling

dimensions of the operators, hence we write the summation sign explicitly.
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where components of the new matrix N are given by

N11 ≡ i ∆1 + ∆2 −∆3 − 3− `
2∆1 − 7

, N12 ≡ i ∆1 + ∆2 −∆3 − 3 + `

2∆1 − 7
(3.110)

and

N21 ≡ i

4
(2∆1 − 5)(2∆1 − 3)(2∆2 − 3)(∆1 + ∆2 + ∆3 − 5− `), (3.111)

N22 ≡ i

4
(2∆1 − 5)(2∆1 − 3)(2∆2 − 3)(∆1 + ∆2 + ∆3 − 5 + `). (3.112)

Comparing (3.109) with the left-hand side of (3.107), we finally conclude

S([ψ†∆1
]ψ∆2O

(`,`)
∆3

)mr =
2∑

n=1

S([φ∆1+3/2−n]φ∆2+3/2−nO
(`,`)
∆3

)Mm
12n N

n
r. (3.113)

Second, we consider the shadow coefficients for the S2 transformation of the struc-

tures (3.102). After analogous manipulations, we obtain the final result

S(ψ∆1 [ψ∆2 ]O(`,`)
∆3

)mn =F×

(
0 1

∆12−∆3+`+3
1

∆21+∆3+`−1
∆12−∆3+`+1

(∆12−∆3+`+3)(∆21+∆3+`−1)

)
,

F ≡−2iπ2×Γ(∆2−3/2)

Γ(∆2−9/2)
×

Γ(−∆1+∆32+`+4
2 )Γ(∆12−∆3+`+5

2 )

Γ(∆1+∆23+`
2 )Γ(∆21+∆3+`−1

2 )
. (3.114)

Third, we apply S3 to both sides of (3.103). We can use the differential opera-

tors (3.104) with 1 ↔ 2, which we denote by Dn
21. The corresponding matrix M21 is

obtained from (3.106) by adding minuses in the second row. The shadow coefficient is much

easier in this case since S3 commutes trivially with all the differential operators. We have

S(ψ∆1ψ
†
∆2

[O(`,`)
∆3

])mn〈ψ∆1ψ
†
∆2
O(`,`)

∆̃3
〉(n)

= Mm
21nD

n
21S3〈φ∆1+3/2−nφ∆2+3/2−nO

(`,`)
∆3
〉. (3.115)

Applying the shadow transform and taking derivatives we arrive at the final result

S(ψ∆1ψ
†
∆2

[O(`,`)
∆3

])mr =

2∑
n=1

S(φ∆1+3/2−nφ∆2+3/2−n[O(`,`)
∆3

])Mm
21n ×

(
M−1

21

∣∣
∆3→∆̃3

)
n
r.

(3.116)

3.5 OPE coefficients in MFT

Having computed the Plancherel measure, shadow coefficients, and three-point pairings, we

can plug these ingredients into (2.56) to write explicit formulas for MFT OPE coefficients.

Below we consider several examples.
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3.5.1 Scalar MFT

The partial wave coefficients for scalar MFT are given by

IMFT(∆, J) =
µ(∆, J)

(〈φφÕJ〉, 〈φ̃φ̃OJ〉)
S([φ

∆̃1
]φ

∆̃2
O∆,J)S(φ∆1 [φ

∆̃2
]O∆,J), (3.117)

where the S(· · · ) coefficients are given in (3.79) and the three-point pairing is given

in (2.17). The conformal block coefficients are minus the residues of

IMFT(∆, J)S(φ∆1φ∆2 [O
∆̃,J

])

=
2J−1Γ(∆− 1)Γ(d2 −∆1)Γ(d2 −∆2)Γ(d2 + J)Γ(d+ J −∆)

Γ(∆1)Γ(∆2)Γ(J + 1)Γ(∆− d
2)Γ(∆ + J − 1)

×
Γ(∆+J+∆1−∆2

2 )Γ(∆+J−∆1+∆2
2 )Γ(J−∆+∆1+∆2

2 )Γ(∆+J−d+∆1+∆2
2 )

Γ(d−∆+J+∆1−∆2
2 )Γ(d−∆+J−∆1+∆2

2 )Γ(2d+J−∆−∆1−∆2
2 )Γ(∆+J+d−∆1−∆2

2 )
, (3.118)

where S(φ∆1φ∆2 [O
∆̃,J

]) is given in (3.81).

The above expression has poles at ∆ = ∆1 + ∆2 + J + 2n (as expected in MFT),

coming from the factor Γ(J−∆+∆1+∆2
2 ). However, it has additional unphysical poles to the

right of the principal series that deserve comment.

Firstly, the expression (3.118) has a set of poles at ∆ = J+d−1+k for k = 1, 2, . . . ,∞,

coming from the factor Γ(d + J −∆). These “spurious” poles cancel against poles in the

conformal blocks when we continue the ∆-contour from the principal series to the real axis,

as proven in [39].

Secondly, the expression (3.118) has additional poles at ∆=±(∆2−∆1)−J+1−k for

k = 1, 2, . . . ,∞. These do not contribute to the conformal block expansion if ∆1,∆2 are

on the principal series. Naively, they would contribute when we allow ∆1,∆2 to become

real with |∆2−∆1| sufficiently large. However, they are ultimately not present in the con-

formal block decomposition (as expected because MFT does not contain such operators).

This can be understood as follows. Consider the partial wave expansion of MFT where

∆1,∆2 start on the principal series, and then analytically continue ∆1,∆2 away from the

principal series. When we continue, new poles may cross into the right ∆-half-plane, but

the ∆ contour should be deformed to avoid them. For more general correlators, we can

imagine analytically continuing the completeness relation for conformal partial waves as

described in [39]. Perhaps this phenomenon can alternatively be understood in terms of the

appearance of new normalizable eigenstates of the Casimirs when ∆1,∆2 are real, whose

contributions cancel against poles in (3.118).

To summarize, the physical conformal block coefficients are given by

PMFT(∆1,∆2,n,J)

=−Res∆=∆1+∆2+2n+J I
MFT(∆,J)S(φ∆1φ∆2 [O

∆̃,J
])

=
(−1)n2JΓ(d2−∆1)Γ(d2−∆2)Γ(d2 +J)Γ(J+n+∆1)Γ(J+n+∆2)

Γ(∆1)Γ(∆2)Γ(J+1)Γ(n+1)Γ(d2 +J+n)Γ(d2−n−∆1)Γ(d2−n−∆2)

×
Γ(d−2n−∆1−∆2)Γ(J+2n+∆1+∆2−1)Γ(−d

2 +J+n+∆1+∆2)

Γ(d−n−∆1−∆2)Γ(2J+2n+∆1+∆2−1)Γ(−d
2 +J+2n+∆1+∆2)

. (3.119)
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In our conventions, the leading term in the OPE limit of the conformal blocks is given

by (A.5), which in this case becomes

G∆i
∆,J(0,x,e,∞)∼ (−1)J(eµ1 · · ·eµJ−traces)Rµ1···µJ

ν1···νJ (x̂)|x|∆−∆1−∆2(eν1 · · ·eνJ−traces)

= (−1)J(eµ1 · · ·eµJ−traces)(x̂µ1 · · · x̂µJ−traces)|x|∆−∆1−∆2

= (−1)J ĈJ(e·x̂)|x|∆−∆1−∆2 , (3.120)

where ĈJ(x) is defined in (2.18). The (−1)J comes about because the two-point function

〈Oµ1···µJ (0)Oν1···νJ (e)〉 given in (3.25) is the matrix implementing a reflection in the e

direction. In cross-ratio space, we have30

G∆,J(z, z̄) ∼ (−1)J(zz̄)
∆
2 ĈJ

(
z + z̄

2
√
zz̄

)
+ . . . (zz̄ � 1)

∼
(
−1

2

)J
z

∆−J
2 z̄

∆+J
2 + . . . (z � z̄ � 1). (3.121)

We find that (3.119) agrees with the result of [25], after taking into account different

normalization conventions for conformal blocks,

PMFT
here =

(
(d− 2)J

2J(d−2
2 )J

)−1

PMFT
there . (3.122)

3.5.2 Seed correlator in 4d

Consider the so called 4d seed correlator [54]. In MFT it is given by

〈φ(p1) f (p,0)(p2)φ(p3) f (0,p)(p4)〉 = 〈φ(p1)φ(p3) 〉〈f (p,0)(p2) f (0,p)(p4)〉. (3.123)

For brevity we simply denote f (p,0) and f (0,p) by f and f † respectively. We can decompose

the left-hand side of (3.123) in the s-channel. The exchanged operators are double-twist

operators of the schematic form

O(x) ∼ ∂2n ∂` φ(x) f (0,p)(x), (3.124)

together with their duals. Here both n and ` are non-negative integers. The opera-

tor (3.124) is in a reducible representation of the rotation group. It decomposes into

p+ 1 irreducible representations as

(`,`)⊗(0,0)⊗(0,p) = (`,`−p)⊕(`,`−p+2)⊕. . .⊕(`,`+p−2)⊕(`,`+p). (3.125)

From now on we focus only on the rightmost operator in (3.125), which we denote by

O(`,`+p)
∆∗ , ∆∗ ≡ ∆φ + ∆f + 2n+ `. (3.126)

30A different convention for two- and three-point structures was used in [31] because it simplified several

formulas in Lorentzian signature. In the conventions of [31], the leading term of the conformal blocks is

z
∆−J

2 z̄
∆+J

2 , and the shadow transform coefficients have extra (−2)J ’s in them.
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Using (2.57), (2.51), and (2.52) we can write the final coefficient encoding the physical

spectrum

CMFT
〈φfO〉〈φf†O†〉 = µ(∆, `, `+ p)

(
〈φ∆φ

f∆f
O∆〉, 〈φ∆̃φ

f
∆̃f
O

∆̃
〉
)−1

× S([φ
∆̃φ

]f
∆̃f
O

∆̃
) S(φ∆φ

[f
∆̃f

]O
∆̃

) S(φ∆φ
f †∆f

[O
∆̃

]). (3.127)

Plugging the Plancherel measure (3.32), the three-point pairing (C.116), the shadow

coefficients (3.97), (3.99) and (3.100) and taking into account (2.15), we get

CMFT
〈φfO〉〈φf†O†〉 =

1

2
(−1)p+1(`+ 1) (∆ + p/2− 2)

×
Γ(2−∆φ)

Γ(∆φ)

Γ (1−∆f − p/2)

Γ (∆f − 1− p/2)

Γ (4−∆ + `+ p/2)

Γ (∆− 1 + `+ p/2)

×
Γ
(

∆φ+∆f−∆+`
2

)
Γ
(

∆φ−∆f+∆+`
2

)
Γ
(

4−∆φ−∆f+∆+`
2

)
Γ
(

4−∆φ+∆f−∆+`
2

)
×

Γ
(
−∆φ+∆f+∆+`+p

2

)
Γ
(
−4+∆φ+∆f+∆+`+p

2

)
Γ
(

4+∆φ−∆f−∆+`+p
2

)
Γ
(

8−∆φ−∆f−∆+`+p
2

) . (3.128)

The poles ∆∗ reproducing the spectrum of our operator (3.126) come from the factor

Γ

(
∆φ + ∆f −∆ + `

2

)
. (3.129)

The OPE coefficients are

λ〈φfO〉λ〈φf†O†〉=−Res
∆∗

CMFT
〈φfO〉〈φf†O†〉

=
(−1)n+p+1(`+1)(∆φ+∆f+2n+`−2+p/2)

Γ(n+1)Γ(n+`+2)

×
Γ(2−∆φ)

Γ(∆φ)

Γ(∆φ+n+`)

Γ(2−∆φ−n)

Γ(∆f+n+`+p/2)

Γ(2−∆f−n+p/2)

Γ(1−∆f−p/2)

Γ(∆f−1−p/2)

×
Γ(4−∆φ−∆f−2n+p/2)

Γ(4−∆φ−∆f−n+p/2)

Γ(−2+∆φ+∆f+n+`+p/2)

Γ(−1+∆φ+∆f+2n+2`+p/2)
. (3.130)

For p = 0 the expression (3.130) is equal to the scalar one (3.119) for d = 4 and J = ` times

an overall 2−` factor which is a matter of normalization in two different formalisms.31 For

p = 1 (3.130) matches the first formula in (3.56) in [55].32

3.5.3 Fermionic correlator in 4d

Finally, consider a four-fermion correlator

〈ψ†(p1)ψ(p2)ψ(p3)ψ†(p4)〉
= 〈ψ†(p1)ψ(p2)〉〈ψ(p3)ψ†(p4)〉 − 〈ψ†(p1)ψ(p3)〉〈ψ(p2)ψ†(p4)〉. (3.131)

31More precisely the difference comes from the three-point pairing. See (C.105) and the discussion below.
32To match the result one needs to compare definitions of tensor structures here and there. For p = 1

one finds that λhere
〈φfO〉λ

here
〈φf†O†〉 = −λthere

〈φfO〉λ
there
〈O†φf†〉 = −PXX .
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As before, ψ transforms in the representation (1, 0) and ψ† in the representation (0, 1).

We for simplicity consider only one species of ψ. In (3.131) the minus sign comes from

permuting two fermionic operators. We decompose (3.131) in the s-channel. The exchanged

operators are the identity, which reproduces the first term in the right-hand side of (3.131),

and double-twist bosonic operators of the schematic form

O(x) ∼ ∂2n ∂` ψ†(x)ψ(x), n, ` ≥ 0 (3.132)

which reproduce the second term in the right-hand side of (3.131). The set of opera-

tors (3.132) is in a reducible representation of the rotation group. They decompose into

irrducibles as follows

(`, `)⊗ (0, 1)⊗ (1, 0) = (`− 1, `− 1)⊕ (`− 1, `+ 1)⊕ (`+ 1, `− 1)⊕ (`+ 1, `+ 1). (3.133)

Here, we focus on the traceless symmetric operators only (the leftmost and the rightmost

operators in (3.133)). Let us shift their spins for convenience and denote them as follows

O1 ≡ O(`,`)
∆1

, ∆1 = 2∆ψ + 2n+ `+ 1, ` ≥ 0, (3.134)

O2 ≡ O(`,`)
∆2

, ∆2 = 2∆ψ + 2n+ `− 1, ` ≥ 1. (3.135)

It is important to note that these operators have a degenerate spectrum since

∆1(`, n) = ∆2(`, n+ 1), n ≥ 0, ` ≥ 1. (3.136)

We thus cannot generically distinguish their contributions to the four-point function (apart

from boundary cases: O1 with ` = 0, ∀n and O2 with ∀` ≥ 1, n = 0). In other words,

we compute the total contribution to the conformal block expansion from operators with

scaling dimension ∆∗ given by

∆∗ = 2∆ψ + 2n+ `− 1, ` ≥ 1. (3.137)

This equation defines the meaning of n in all what follows. For simplicity we will ignore

the case ` = 0.

According to (2.57), (2.51), and (2.52) we can write the final coefficient encoding the

physical spectrum

CMFT
ae 〈ψ†ψO〉〈ψψ†O†〉 = −µ(∆, `, `)

(
〈ψ†∆ψ

ψ∆ψ
O∆〉(a), 〈ψ†

∆̃ψ
ψ

∆̃ψ
O

∆̃
〉(b)
)−1

× S([ψ†
∆̃ψ

]ψ
∆̃ψ
O

∆̃
)bc S(ψ∆ψ

[ψ
∆̃ψ

]O
∆̃

)cdS(ψ∆ψ
ψ†∆ψ

[O
∆̃

])de. (3.138)

Note the extra minus in the formula above compared to (2.57). This minus comes

from (3.131) since it is not present in (2.53). We get the final expression for the

coefficient CMFT by plugging the three-point pairing (C.119) and the shadow coeffi-

cients (3.113), (3.114) and (3.116) and using (2.15).
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The final explicit form of (3.138) has poles corresponding to the physical spec-

trum (3.137) and can be used to extract the products of OPE coefficients as minus residues

of these poles

λa〈ψ†ψO〉λ
b
〈ψψ†O〉 = −Res

∆∗
CMFT
ab 〈ψ†ψO〉〈ψψ†O†〉 = −2 Res

n
CMFT
ab 〈ψ†ψO〉〈ψψ†O†〉. (3.139)

Let us make a simple rotation of the coefficients (3.139) and define the following object

P ac ≡ λa〈ψ†ψO〉λ
b
〈ψψ†O〉R

bc, R ≡

(
+1 0

0 −1

)
. (3.140)

We will now write the final answer for the coefficients P ac.33

In the boundary case of n = 0 only the C22 component develops a pole corresponding

to (3.137). The associated product of OPE coefficients is

P 22 = 8
√
π

4−∆ψ−`

(`− 1)!

Γ (∆ψ − 1/2 + `) Γ (2∆ψ − 1 + `)

Γ (∆ψ + 1/2) Γ (∆ψ − 1 + `)
. (3.141)

In the generic case of n ≥ 1, all four components of Cmn develop poles associated to (3.137).

The related products of OPE coefficients are

P 11 = S ×
(

(`+ n+ 1)− `+ 1

`
(2∆ψ − 3 + n)(2∆ψ − 4 + `+ 2n)

)
, (3.142)

P 12 = P 21 = S × (2∆ψ − 5 + n)(2∆ψ − 2 + `+ 2n), (3.143)

P 22 = −S × 1

n
(2∆ψ − 2 + `+ 2n) ((2∆ψ − 4 + `)(2 + `+ 2n) + 2n(n+ 1)) , (3.144)

where we have defined S to be

S≡ 128π2 (−1)n+1 4−2∆ψ−`−2n

(n−1)!(`+n+1)!

`(`+1)

`+2

2∆ψ−3+`+2n

2∆ψ−4+`+2n

sec(π∆ψ)2

Γ(∆ψ−3/2)2 Γ(∆ψ+1/2)2

×
Γ(∆ψ−1/2+`+n)Γ(2∆ψ−3+`+n)

Γ(∆ψ−1+`+n)

Γ(3−∆ψ−n)

Γ(5−2∆ψ−n)Γ(5/2−∆ψ−n)
. (3.145)

The coefficients P ab have been guessed in [16] by using explicit expressions for confor-

mal blocks. Our result looks apparently different but is in fact in a perfect agreement with

the one of [16].

4 Shadow coefficients from Fourier transforms

In this section, we discuss a general approach to the shadow transform based on going

through momentum space. The advantage of this approach is that it gives a straightforward

algorithm for computing arbitrary shadow coefficients from representation-theoretic data,

which will allow us to compute MFT OPE coefficients for rather complicated correlators,

such as 〈JJJJ〉 and 〈TTTT 〉 in 3d.

33This is done for an easy comparison of the results obtained here with the ones in [16]. Looking at their

definition of structures one has P ac = (−1)`+1 ×
(
λa〈ψ†ψO〉λ

c
〈Oψ†ψ〉

)
there

.
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The shadow transform of a correlation function 〈Oa(x) · · ·〉 is defined as∫
ddy〈Õa(x)Õ†b(y)〉〈Ob(y) · · ·〉. (4.1)

Due to translation invariance we have

〈Õa(x)Õ†b(y)〉 = Ka
b(x− y), (4.2)

and thus the shadow transform is a convolution with the kernel K. The basic idea now is

to recall that a convolution in position space is equivalent to multiplication in momentum

space. In particular, if we define

Ob(p) ≡
∫
ddx e−ipxOb(x), (4.3)

Ka
b(p) ≡

∫
ddx e−ipxKa

b(x), (4.4)

then the shadow-transformed correlator in momentum space is given by

Ka
b(p)〈Ob(p) · · ·〉. (4.5)

We can then perform the shadow transform by first doing a Fourier transform, then

multiplying by the Fourier transform of the two-point function, and finally Fourier-

transforming back.

This observation is only useful if the Fourier transform is easier to perform than the

shadow transform. In this work, we are mainly interested in shadow transforms of three-

point functions. Three-point functions in momentum space have been studied in [56–59]

and are in general quite complicated if all three-operators are taken to be in momentum

space. However, for our purposes it is sufficient to Fourier-transform only one of the

operators, and we are free to choose the kinematics for the other two. We will see shortly

that in a particular choice of kinematics both the direct and the inverse Fourier transforms

are straightforward to perform on general three-point functions. This leads to an efficient

algorithm for computation of shadow coefficients.

4.1 An algorithm for computing shadow transform

4.1.1 Two-point function in momentum space

Our first goal is to understand the kernel Ka
b(p), which is the Fourier-transform of the

two point function

Ka
b(p) =

∫
ddxe−ipx〈Õa(x)Õ†b(0)〉. (4.6)

Let us first understand the constraints imposed on Ka
b(p) by SO(d) invariance. Recall

that in Ka
b(p), the index b transforms in ρ∗, while the index a transforms in ρR, where

ρ is the SO(d) representation of O. Therefore, for each p the kernel K is a map ρ → ρR.

This map has to be invariant under the SO(d− 1) which stabilizes p.
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Such maps are easy to classify. Indeed, any irreducible ρ decomposes into a direct sum

of SO(d− 1) representations λd−1 without multiplicities [41],

ρ '
⊕

λd−1∈ρ
λd−1 (as a SO(d− 1) representation), (4.7)

and the same holds for ρR. Moreover, the SO(d− 1) decompositions of ρR and ρ coincide,

since one can take the reflection direction to be the one preserved by SO(d− 1),34

ρR '
⊕

λd−1∈ρ
λd−1 (as a SO(d− 1) representation). (4.8)

By Schur’s lemma for SO(d− 1) irreps and scaling invariance, we must have

K(p) =
∑

λd−1∈ρ
Aλd−1

Πλd−1
(p)p2∆̃−d, (4.9)

where Πλd−1
(p) is the unique35 SO(d − 1)-invariant map which maps λd−1 in ρ to λd−1

in ρR and everything else to 0, Aλd−1
are some yet undetermined coefficients. Here the

argument p in Πλd−1
(p) means that it is invariant under the SO(d− 1) which preserves p.

We have

Πλd−1
(p) = R(p)Πλd−1

(q)R−1(p), (4.10)

where q is some standard momentum and R(p) is any SO(d) rotation which takes p to q.

Note that R is represented in ρ on the right and ρR on the left.

The problem of computing K(p) is now reduced to the problem of determining the

numbers Aλd−1
. Up to an overall coefficient these numbers are fixed by requiring invariance

under special conformal transformations. In this way, Aλd−1
have been determined for

general ρ in 4d CFTs in [60]. In appendix E, we compute Aλd−1
in 3d CFTs. Here, we

merely state the 3d result.

The SO(3) representations are labeled by non-negative (half-)integer spin j, and SO(2)

representations are labeled by (half-)integer spin m. We have jR = j and

j =

j⊕
m=−j

m. (4.11)

The corresponding decomposition of K is then

K(p) =

j∑
m=−j

Aj,mΠm(p)p2∆̃−3, (4.12)

34In other words, the outer automorphism of SO(d) induced by the reflection can be taken to act trivially

on SO(d− 1).
35Unique up to a multiplicative factor. One can implement ρR so that ρ and ρR are realized in the same

vector space and coincide as representations of SO(d− 1) which preserves some standard momentum q. In

this case one can canonically normalize Πλd−1(q) to be a projector, and then extend this to all p by SO(d)

invariance, see below.

– 38 –



J
H
E
P
1
0
(
2
0
1
9
)
2
1
7

where

Aj,m = i−2m 4π sinπ(∆̃ + j)Γ(2− 2∆̃)(∆̃− 1)

∆̃ + j − 1

Γ(∆̃ +m− 1)Γ(∆̃−m− 1)

Γ(∆̃ + j − 1)Γ(∆̃− j − 1)
. (4.13)

Here ∆̃ and j are the scaling dimension and spin of Õ.

4.1.2 Three-point functions in momentum space

The next step is to understand the Fourier transform of three-point functions. Let us first

consider a simple example, the three-point function

〈φ1(x1)Oµ1...µJ
2 (x2)φ3(x3)〉. (4.14)

Here φi are scalars and O2 is a traceless-symmetric spin-J tensor. This three-point function

has only one conformally-invariant tensor structure, and to write it down it is convenient

to set x1 = 0 and x3 =∞. We then find

〈φ1(0)Oµ1...µJ
2 (x)φ3(∞)〉 = (xµ1 · · ·xµJ − traces)x−∆1−∆2+∆3−J . (4.15)

This form is fixed completely by SO(d) and scale invariance. It is obvious that the Fourier

transform of this tensor structure is of the same form,

〈φ1(0)Oµ1...µJ
2 (p)φ3(∞)〉 = F∆1+∆2−∆3,J(pµ1 · · · pµJ − traces)p∆1+∆2−∆3−J−d, (4.16)

where the constant Fλ,J is defined by

Fλ,J(pµ1 · · · pµJ − traces)pλ−J−d =

∫
ddxe−ipx(xµ1 · · ·xµJ − traces)x−λ−J . (4.17)

We can compute Fλ,J by setting p = (1, 0, . . .) and contracting all indices on both sides

with a null vector z = (1, i, 0, . . .). The result is

Fλ,J = i−J2d−λπ
d
2

Γ
(
d+J−λ

2

)
Γ
(
λ+J

2

) . (4.18)

This in fact turns out to be the only Fourier transform we ever need to compute.

Indeed, consider the most general three-point function

〈Oa1(0)Ob2(x)Oc3(∞)〉 (4.19)

with operators Oi in SO(d) representations ρi. The allowed tensor structures are in one-

to-one correspondence [40, 61] with SO(d− 1)-invariants in36

ρ1 ⊗ ρ2 ⊗ ρR3 . (4.20)

This follows simply from SO(d) invariance, the SO(d − 1) subgroup being the subgroup

which preserves x. The only SO(d) representations which contain SO(d− 1) invariants are

36We write ρR3 because this operator has been put at infinity. This is irrelevant from the point of view of

SO(d− 1), but will become relevant from the point of view of SO(d) below.
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the traceless-symmetric tensors; moreover, each traceless-symmetric representation con-

tains precisely one SO(d− 1) invariant. This means that the tensor structures are also in

one-to-one correspondence with traceless-symmetric SO(d) representations in (4.20).

This latter point of view allows one to write down the general form of (4.19). Indeed,

it follows that for each tensor structure, there is a number J and an SO(d)-invariant tensor

Qabc
µ1...µJ

, traceless and symmetric in indices µi. We can then write37

〈Oa1(0)Ob2(x)Oc3(∞)〉 = Qabc
µ1...µJ

(xµ1 . . . xµJ − traces)x−∆1−∆2+∆3−J . (4.21)

Clearly, the Fourier transform is just

〈Oa1(0)Ob2(p)Oc3(∞)〉=F∆1+∆2−∆3,JQabc
µ1...µJ

(pµ1 . . .pµJ−traces)p∆1+∆2−∆3−J−d. (4.22)

We thus see that in this basis of tensor structures, the Fourier transform is essentially

diagonal. We can label the three-point tensor structures by pairs (ρ13, J), where ρ13 ∈
ρ1⊗ ρR3 and ρ13⊗ ρ2 contains a traceless-symmetric spin-J tensor. The same classification

applies also in momentum space, and we have

(ρ13, J)
Fourier←−−−→ F∆1+∆2−∆3,J × (ρ13, J). (4.23)

We will call this basis of three-point tensor structures the SO(d)-basis.

4.1.3 The final algorithm

With Fourier transforms understood, it only remains to act on the Fourier-transformed

three-point function by K(p). The only problem with this is that K(p) acts diagonally

on SO(d − 1) components of ρ2, while in SO(d)-basis structures introduced above these

components are mixed when we combine ρ13 and ρ2 into an SO(d) traceless-symmetric

tensor. It is therefore convenient at this stage to use a different basis of tensor structures,

in which the action of K(p) will be diagonal.

It is the easiest to define this basis for a standard momentum p = q. In this standard

configuration we can build SO(d − 1) invariants by taking dual pairs of SO(d − 1) repre-

sentations from ρ13 and ρ2. Since in any SO(d) irrep a given SO(d − 1) irrep appears at

most once, we can label these structures by pairs (ρ13, λd−1), where the SO(d − 1) irrep

λd−1 ∈ ρ2 and λ∗d−1 ∈ ρ13. We then have

K(q) · (ρ13, λd−1) = Aλd−1
× (ρ13, λd−1). (4.24)

We will call this basis of tensor structures the SO(d− 1)-basis.

To sum up, we have introduced two bases of tensor structures for a generic three-

point function, the SO(d)- and the SO(d − 1)-basis. The Fourier transform is diagonal,

in an appropriate sense, in the SO(d)-basis, while momentum-space shadow transform is

37Here we mix the index of ρR3 with ρ3. To do so we assume that the representation ρR was defined

according to (2.1) with reflection R being along the axis along which O3 was taken to ∞. In other words,

here it is essential to use a separate realization for ρR even if ρR ' ρ.
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diagonal in the SO(d − 1)-basis. The algorithm for computing the shadow transform of a

given three-point function is then as follows:

1. Start in the SO(d)-basis. Fourier-transform to momentum space. (Diagonal operation.)

2. Convert to the SO(d− 1)-basis. (Representation-theoretic problem.)

3. Apply shadow transform in momentum space. (Diagonal operation.)

4. Convert to the SO(d)-basis. (Representation-theoretic problem.)

5. Fourier-transform to position space. (Diagonal operation.)

It will not be important in our examples, but let us note that the representation-

theoretic data which goes into the conversion between SO(d)- and SO(d − 1)-bases is

given by SO(d) : SO(d − 1) isoscalar factors,38 rather then the complete Clebsch-Gordan

coefficients.

4.1.4 A note on simplifying the expressions39

The algorithm described above involves several non-diagonal operations (two changes of

basis), which means that the Fourier-transform coefficients F∆,J and Aλd−1
for different

J and λd−1 will mix. Since these coefficients are given by products of Γ-functions, the

intermediate expressions can get quite complicated. It is the purpose of this section to

point out how one can easily factor out all Γ-factors and work only with rational functions.

The coefficients Aλd−1
are the easiest to deal with since, as can be seen for example

from the explicit expressions in 3d (4.13) and in 4d [60], the ratios Aλd−1
/Aλ′d−1

for two

SO(d − 1) irreps are rational. Thus Aj,0 or Aj, 1
2

can be factored out when applying

the shadow transform in momentum space. The more problematic factor is the Fourier

transform coefficient F∆,J since it is J
2 which enters the arguments of the Γ-functions,

cf. (4.17), and at this point we have not constrained the parity of J .

Fortunately, the parity of J is constrained automatically in even dimensions. Indeed,

SO(2n) has a non-trivial central element,

C = eπM12+πM34+...+πMd−1,d (4.25)

which rotates by π in all planes, thereby sending any vector x to −x. Since it commutes

with all elements of SO(2n), it acts by a c-number in any irrep of SO(2n). In particular, in

traceless-symmetric representations it acts by (−1)J . Thus, if it acts by Ci in representa-

tions ρi, the product C1C2C3 = ±1 determines the parity of J of traceless-symmetric irreps

appearing in (4.20).40

38Also known as reduced Clebsch-Gordan coefficients or reduction factors (see also [48] for a recent

discussion in the context of CFT).
39This subsection can be safely skipped on the first reading.
40For bosonic representations this can also be explained by noting that the invariant tensors δµν and

εµ1...µ2n of SO(2n) both have an even number of indices. This means that Q in (4.21) necessarily has an

even number of vector indices (including those which go into labels a, b, c).
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In odd dimensions we can still define C as C = P, the parity transformation which

sends x→ −x. However, now it is not part of SO(d). Nevertheless, it belongs to the center

of O(d), and since there are no chiral irreps in odd dimensions, we can always assume

that our representations are also representations of O(d). Then again C will act by a c-

number in irreducible representations, and the action on (4.20) will be by C1C2C3. The only

difference is that the three-point structures now can be parity-even, in which case we have

(−1)J = C1C2C3 or parity-odd, in which case (−1)J = −C1C2C3.41

The conclusion is that in the algorithm of section 4.1.3 all Γ-functions can be factored

out from all expressions in even dimensions, and separately for parity-even and parity-

odd structures in odd dimensions, leaving only rational functions of spins and scaling

dimensions. We will see this at work in 3d examples below.

4.2 Implementation in 3d

In this section we implement the algorithm of section 4.1.3 in 3d. Our conventions are

described in appendix D.

4.2.1 Plancherel measure

As a warm up, let us compute the square of shadow transform and the Plancherel measure.

As computed in appendix E, the Fourier-transformed shadow kernel (4.4) for p=(0, 0, 1) is

K∆(p) =

j∑
m=−j

Aj,m(∆̃)|j,m〉〈j,m|, (4.26)

with Aj,m(∆) given by (E.10). The square of the shadow transform is

K∆̃(p)K∆(p) =

j∑
m=−j

Aj,m(∆)Aj,m(∆̃)|j,m〉〈j,m|. (4.27)

Using the explicit expressions we can easily verify that for j ∈ Z

N (∆, j) ≡ Aj,m(∆)Aj,m(∆̃) =
2π3 tanπ∆

(2∆− 3)(∆ + j − 1)(2 + j −∆)
, (4.28)

and for j ∈ Z + 1
2

N (∆, j) ≡ Aj,m(∆)Aj,m(∆̃) =
2π3 cotπ∆

(2∆− 3)(∆ + j − 1)(2 + j −∆)
, (4.29)

independently of m. In either case we have

K∆̃(p)K∆(p) =

j∑
m=−j

N (∆, j)|j,m〉〈j,m| = N (∆, j)1. (4.30)

41Similarly to footnote 40, for bosonic irreps we can observe that δµν is parity-even and has an even

number of indices, while εµ1...µd is parity-odd and has an odd number of indices.
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This is then valid for all p by SO(3) and scale invariance. According to (2.30) we have

µ(∆, j) =
1

N (∆, j)

tr[K
∆̃

(−∞)K∆(∞)]

238π2
, (4.31)

where K is in position space. Here we have K∆(∞) = limL2∆̃K∆(Lê2). From (D.25) we

find K
∆̃

(−∞) = (−1)2jK∆(∞) = (−1)2jK∆(ê2) and then using (D.31) we conclude

tr[K
∆̃

(−∞)K∆(∞)] = (−1)2j(2j + 1). (4.32)

Therefore,

µ(∆, j) =
1

128π5
(2j + 1)(2∆− 3)(∆ + j − 1)(2 + j −∆) cotπ(∆− j). (4.33)

This is in precise agreement with (3.57). As an extra consistency check, we note that by

using spinor weight-shifting operators from [36] and following the same reasoning as in

section 3.2 we can also derive the following recursion relation for µ(∆, j),

µ(∆, j) =
(2j + 1)(2∆− 3)(∆ + j − 1)

2j(2∆− 4)(∆ + j − 2)
µ

(
∆− 1

2
, j − 1

2

)
, (4.34)

which is obviously consistent with (4.33).

4.2.2 Example: scalar-vector-spin-j

Let us now see how the algorithm of section 4.1.3 can be used to compute the shadow

transform of

〈φ(x1)vµ(x2)Oν1...νj (x3)〉 (4.35)

with respect to x2. First, let us note that there exist two parity-even structures tensor

structures, in the notation of [45] given by

T+
1 = V2V

j
3 , (4.36)

T+
2 = H23V

j−1
3 , (4.37)

and one parity-odd tensor structure,

T−1 = ε23V
j−1

3 . (4.38)

These structures in what we will call the q-basis of [40] are given by

T+
1 = (−i)j+12

j−1
2 [000]+, (4.39)

T+
2 = (−i)j−12

j−1
2 ([000]+ + [01̄1]+), (4.40)

T−1 = −(−i)j2
j−1

2 [01̄1]−, (4.41)

where for compactness we used notation 1̄ ≡ −1. As explained in appendix D.1, the q-basis

structures can then be directly translated into the notation

|j1,m1〉 ⊗ |j2,m2〉 ⊗ |j3,m3〉 (4.42)
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where j1 = 0, j2 = 1, j3 = j. In particular, we have

[000]+ = 2ij−1|0, 0〉 ⊗ |1, 0〉 ⊗ |j, 0〉, (4.43)

[01̄1]± = ij+1

√
2(j + 1)

j
(|0, 0〉 ⊗ |1,−1〉 ⊗ |j,+1〉 ± |0, 0〉 ⊗ |1,+1〉 ⊗ |j,−1〉) (4.44)

To implement the algorithm, we now need to define the SO(d) = SO(3) and

SO(d− 1) = SO(2) bases. Let us do this in full generality for three arbitrary spins j1, j2, j3
and then specialize to our example. We first define SO(3) basis using the standard SO(3)

Clebsch-Gordan coefficients as

Tj13,J
SO(3) ≡

∑
m1+m2+m3=0

〈j2,m2; j13,m1 +m3|J, 0〉〈j1,m1; j3,m3|j13,m1 +m3〉×

× |j1,m1〉 ⊗ |j2,m2〉 ⊗ |j3,m3〉. (4.45)

Namely, we first take the tensor product j13 ∈ j1 ⊗ j3 and then take the tensor product

J ∈ j13 ⊗ j2. Then we define the SO(2) basis as

Tj13,m2

SO(2) ≡
∑

m1+m3=−m2

〈j1,m1; j3,m3|j13,m1 +m3〉 |j1,m1〉 ⊗ |j2,m2〉 ⊗ |j3,m3〉, (4.46)

which makes it intermediate between q-basis and SO(3) basis. We have

Tj13,J
SO(3) =

∑
m2

〈j2,m2; j13,−m2|J, 0〉Tj13,m2

SO(2) , (4.47)

Tj13,m2

SO(2) =
∑

J∈j13⊗j2

〈J, 0|j2,m2; j13,−m2〉Tj13,J
SO(3). (4.48)

In our example the transition from q-basis to SO(2)-basis is essentially trivial, since

we have j1 = 0. Translating then to SO(3) basis we find

T+
1 = (−1)1+j2

1+j
2

√
j

2j + 1
Tj,j−1

SO(3) + (−1)j2
1+j

2

√
j + 1

2j + 1
Tj,j+1

SO(3), (4.49)

T+
2 = (−1)j2

1+j
2

√
2j + 1

j
Tj,j−1

SO(3), (4.50)

T−1 = i(−1)j2
j+1

2

√
j + 1

j
Tj,jSO(3). (4.51)

As promised in section 4.1.4, parity of J is determined by the parity of the structures. In

particular, for parity-even structures we see that J = j ± 1, which has the same parity as

j1 + j2 + j3 = j + 1, while for parity odd structures we have J = j, which has the opposite

parity. We will now compute the shadow transform in SO(3) basis and then reinterpret

the result in terms of T±i structures.
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Shadow transform of SO(3) structures. Let us first apply the shadow transform to

Tj,j−1
SO(3). We first Fourier transform

Tj,j−1
SO(3) → F∆1+∆2−∆3,j−1Tj,j−1

SO(3). (4.52)

We will keep this factor of F∆1+∆2−∆3,j−1 in mind, but not write it explicitly until the

end. Then we convert to SO(2) basis, obtaining

Tj,j−1
SO(3) =

√
j + 1

2(2j + 1)
Tj,−1

SO(2) +

√
j + 1

2(2j + 1)
Tj,+1

SO(2) −

√
j

2j + 1
Tj,0SO(2). (4.53)

Now we apply shadow transform in momentum space to obtain,

A1,−1(∆̃)

√
j + 1

2(2j + 1)
Tj,−1

SO(2) +A1,+1(∆̃)

√
j + 1

2(2j + 1)
Tj,+1

SO(2) −A1,0(∆̃)

√
j

2j + 1
Tj,0SO(2) =

= A1,0(∆̃)

(
−∆2 − 1

∆2 − 2

√
j + 1

2(2j + 1)
(Tj,−1

SO(2) + Tj,+1
SO(2))−

√
j

2j + 1
Tj,0SO(2)

)
. (4.54)

We again temporarily remove the factor A1,0(∆̃) to keep the expressions simpler. We now

transform this expression back to SO(3) basis to obtain

2 + j −∆2

(2j + 1)(∆2 − 1)
Tj,j−1

SO(3) +

√
j(j + 1)(3− 2∆2)

(2j + 1)(∆2 − 1)
Tj,j+1

SO(3). (4.55)

Now we need to Fourier-transform back to position space, which is easy in SO(3) basis,

F∗−∆1+∆2+∆3,j−1

(2π)3

2 + j −∆2

(2j + 1)(∆2 − 1)
Tj,j−1

SO(3) +
F∗−∆1+∆2+∆3,j+1

(2π)3

√
j(j + 1)(3− 2∆2)

(2j + 1)(∆2 − 1)
Tj,j+1

SO(3).

(4.56)

Here −∆1 + ∆2 + ∆3 = −(∆1 + ∆̃2 −∆3) + 3 is the power of p in the shadow transform

of momentum space three-point function. At this point, we use the fact that only J of the

same parity as j − 1 enter this expression, and write

F∗−∆1+∆2+∆3,j−1 = (−1)j−1F−∆1+∆2+∆3,j−1, (4.57)

F∗−∆1+∆2+∆3,j+1 = (−1)j
∆1 −∆2 −∆3 + j + 2

∆3 + ∆2 −∆1 + j − 1
F−∆1+∆2+∆3,j−1. (4.58)

This allows us to factor out F−∆1+∆2+∆3,j−1. Collecting everything together we now have

the shadow transform

Tj,j−1
SO(3) −→ C+

[
(−1)j−1

(2π)3

2 + j −∆2

(2j + 1)(∆2 − 1)
Tj,j−1

SO(3)

+
(−1)j

(2π)3

∆1 −∆2 −∆3 + j + 2

∆3 + ∆2 −∆1 + j − 1

√
j(j + 1)(3− 2∆2)

(2j + 1)(∆2 − 1)
Tj,j+1

SO(3)

]
, (4.59)
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where C+ is given by

C+ ≡ F∆1+∆2−∆3,j−1A1,0(∆̃2)F−∆1+∆2+∆3,j−1 (4.60)

and contains all some non-trivial products of Γ-functions. Note that by restricting to

definite parity structures we were able to restrict parity of J in Fλ,J , and thus factor all

F -coefficients out, leaving only rational functions of scaling dimensions inside the square

brackets of (4.59). We can now perform the same calculation for shadow transform of

Tj,j+1
SO(3), factoring out the same C+, to obtain

Tj,j+1
SO(3) −→C+

∆3 −∆1 −∆2 + j + 2

∆1 + ∆2 −∆3 + j − 1

[
(−1)j+1

(2π)3

√
j(1 + j)(2∆2 − 3)

(2j + 1)(∆2 − 1)
Tj,j−1

SO(3)

+
(−1)j

(2π)3

∆1 −∆2 −∆3 + j + 2

∆3 + ∆2 −∆1 + j − 1

∆2 + j − 1

(2j + 1)(∆2 − 1)
Tj,j+1

SO(3)

]
. (4.61)

A much more straightforward calculation implies for the parity-odd structure

Tj,jSO(3) −→ C−
(−1)j+1

(2π)3

∆2 − 2

∆2 − 1
Tj,jSO(3), (4.62)

where

C− ≡ F∆1+∆2−∆3,jA1,0(∆̃2)F−∆1+∆2+∆3,j . (4.63)

Shadow transform of T±
i structures. We can now translate these results into results

for T±i structures by a straightforward change of basis and find

C−1
+ T+

1 −→
(−1)jj(2∆2−3)(∆1−∆3)

8π3(∆2−1)(∆1+∆2−∆3+j−1)(∆2+∆3−∆1+j−1)
T+

2

+
(−1)j (−∆1+∆2+∆3−j−2)

(
∆2

2+∆1∆2−∆3∆2−3∆2−∆1+∆3+∆2j−2j+2
)

8π3 (∆2−1)(∆1+∆2−∆3+j−1)(−∆1+∆2+∆3+j−1)
T+

1 ,

(4.64)

C−1
+ T+

2 −→
(−1)j (2∆2−3)(−∆1+∆2+∆3−j−2)

8π3 (∆2−1)(−∆1+∆2+∆3+j−1)
T+

1

+
(−1)j

(
∆2

2−∆1∆2+∆3∆2−3∆2+2∆1−2∆3−∆2j+j+2
)

8π3 (∆2−1)(−∆1+∆2+∆3+j−1)
T+

2 , (4.65)

C−1
− T−1 −→

(−1)j+1 (∆2−2)

8π3 (∆2−1)
T−1 . (4.66)

Comparing with weight-shifting operators. Let us compare this result with the one

which may be obtained using weight-shifting operators for the parity-even structures. We

are only going to check a very particular linear combination of structures, namely the one

which is obtained by acting with a specific weight-shifting operator on the scalar-scalar-

spin-j structure,

TD ≡ (D0+
2 ·D

−0
1 )〈φ∆1+1φ∆2O∆3,j〉=D21〈φ∆1+1φ∆2O∆3,j〉=

j

2
T+

2 +
∆1−∆2−∆3+j+1

2
T+

1 ,

(4.67)
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where D21 is in notation of [52]. By using our results above, we find that under the shadow

transform

TD −→ C+
(−1)j+1 (∆1 −∆2 −∆3 + j + 2)

8π3 (∆1 + ∆2 −∆3 + j − 1)

(
j

2
T+

2 +
∆1 + ∆2 −∆3 + j − 2

2
T+

1

)
. (4.68)

On the other hand, we have from equation (3.73)

S2(D0+
2 ·D

−0
1 )〈φ∆1+1φ∆2O∆3,j〉=

=
∆2−1

3−∆2
(D0+

2 ·D
−0
1 )〈φ∆1+1S[φ∆2 ]O∆3,j〉

=
∆2−1

3−∆2
S(φ∆1+1[φ∆2 ]O∆3,j)(D0+

2 ·D
−0
1 )〈φ∆1+1φ3−∆2O∆3,j〉, (4.69)

and thus under shadow transform

TD −→
∆2 − 1

3−∆2
S(φ∆1+1[φ∆2 ]O∆3,j)

(
j

2
T+

2 +
∆1 + ∆2 −∆3 + j − 2

2
T+

1

)
. (4.70)

The two calculations are thus consistent if

C+
(−1)j+1 (∆1 −∆2 −∆3 + j + 2)

8π3 (∆1 + ∆2 −∆3 + j − 1)
=

∆2 − 1

3−∆2
S(φ∆1+1[φ∆2 ]O∆3,j). (4.71)

This identity indeed holds.

It may appear that the above derivation of shadow transform from weight-shifting

operators is simpler than using the Fourier-space algorithm. While this is true in some

cases, in general the former approach requires computing the action of differential operators

on tensor structures, which can be quite non-trivial for more complicated correlators. It also

requires one to choose a basis of differential operators to generate all tensor structure, which

is in principle a non-canonical procedure. At the same time, the approach based on Fourier

space only involves handling rational42 functions built out of closed-form expressions such

as Aj,m(∆)/Aj,0(∆) and Fλ,J+2n/Fλ,J . Together with the fact that it works on bases of

tensor structures which are defined uniformly for all choices of external representations,

this allows one to efficiently automate the calculation.

4.2.3 Three-point pairings

The last non-trivial element is the computation of three-point pairings. It is again conve-

nient to work in q-basis of [40]. From (2.13) and the discussion of appendix D.1 it is easy

to see that the only non-zero pairings are

([m1,m2,m3], [−m1,−m2,−m3]) =
(−1)j1+j2+j3

232π

((
2j1

j1 +m1

)(
2j2

j2 +m2

)(
2j3

j3 +m3

))−1

.

(4.72)

This makes computing the inverse pairing in (4.81) below especially easy.

42Modulo some square roots of functions of j, which come from CG coefficients and can perhaps be

avoided by a suitable rescaling of basis tensor structures.
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4.3 OPE coefficients of 3d current MFT

As an application, we use the results of 2.7 to compute the conformal block expansion of

the MFT current four-point function in 3d,

〈J(x1)J(x2)J(x3)J(x4)〉 =

= 〈J(x1)J(x2)〉〈J(x3)J(x4)〉+ 〈J(x1)J(x3)〉〈J(x2)J(x4)〉+ 〈J(x1)J(x4)〉〈J(x2)J(x3)〉,
(4.73)

where we kept the vector indices implicit. The calculation is rather involved, so we do not

reproduce here the intermediate results, such as shadow transform coefficients. Instead, we

will describe the key points of the computation and state the final results. Same comments

apply to the analysis of the four-point function of stress-energy tensors in the next section.

We agree to normalize two-point functions of our operators as in appendix D.2. We

also need to fix a basis of three-point structures for 〈JJOj〉 for O a spin-j operator. These

three-point structures have been studied in [14]. The conclusion of their analysis is that

after taking into account the conservation of J and the permutation symmetry between

the two J ’s,

• for j = 0 there exist one parity-even and one parity-odd structure,

• for j = 1 there exist no structures,

• for even j ≥ 2 there exist two parity-even and one parity-odd structure,

• for odd j ≥ 3 there exists one parity-odd structure.

We will not completely reproduce these tensor structures here, but only give the minimal

information sufficient to define the OPE coefficients. In particular, we write

〈JJO0〉 = λ
(1)
JJO+ [000]+ + λ

(1)
JJO− [11̄0]− + . . . , (4.74)

〈JJOj〉 = λ
(1)
JJO+ [000]+ + λ

(2)
JJO+ [011̄]+ + λ

(1)
JJO− [11̄0]− + . . . , (j ≥ 2 even) (4.75)

〈JJOj〉 = λ
(1)
JJO− [011̄]− + . . . , (j ≥ 3 odd). (4.76)

Here we are using the q-basis as defined in [40], and 1̄ = −1. Furthermore, the dots in

these equations represent terms which contain other q-basis structures, which are needed to

restore permutation symmetry and conservation of J . Finally, we note that MFT preserves

parity, so parity-odd operators have only parity-odd OPE coefficients λ
(i)
JJO− and parity-

even operators have only parity-even OPE coefficients λ
(i)
JJO+ .

4.3.1 Exchanged operators

The primary operators exchanged in the 〈JJJJ〉 four-point function are normal-ordered

products

:Jµ1(x)∂ν1 · · · ∂νk∂2nJµ2(x) : +desc.− traces(νi) (4.77)
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We have computed the degeneracies of these operators by taking the symmetric square of

the character of the Verma module corresponding to J , and decomposing into irreducible

characters. We find that there exist the following operators,43

• parity-even operators O+
j with ∆+

n,j = 2n + j + 2, for all even j ≥ 0, n ≥ 0, and

∆+
n,j ≥ 4. The degeneracies of the operators are the same as the number of three-point

tensor structures, except that for n = 0 there is at most one operator.

• parity-odd operators O−j with ∆−n,j = 2n+ j + 3, for all j ≥ 0, n ≥ 0, and ∆−n,j ≥ 5,

except j = 1. All degeneracies are equal to 1.

4.3.2 Shadow transforms and pairings with conserved operators

Our goal now is to compute Pab(∆, j,±) which is defined as

Pab(∆, j,±) =
∑
O±

λ
(a)
JJO±λ

(b)
JJO± , (4.78)

where the sum is over operators with given parity, dimension and spin. It should generically

be non-zero for the operators described above, and its rank should generically be equal to

the number of degenerate operators (but no more than the dimension of the matrix, of

course). According to (2.52) we have

Pac(∆∗, j,±) = −Res∆→∆∗

(
Iab(∆, j,±)S(J3J4[O

∆̃,j,±])bc

)
, (4.79)

where we have labeled the J operators by their positions in the four-point function. In

turn, the matrix Iab is given by (2.56),

Iab(∆, j,±) = µ(∆, j)S([J̃1]J̃2O∆,j,±)deS(J1[J̃2]O∆,j±)ea

(
〈J1J2Õ〉(b), 〈J̃1J̃2O〉(d)

)−1
,

(4.80)

where
(
〈J1J2Õ〉(b), 〈J̃1J̃2O〉(d)

)−1
is defined by

(
〈J1J2Õ〉(b), 〈J̃1J̃2O〉(d)

)−1 (
〈J1J2Õ〉(a), 〈J̃1J̃2O〉(d)

)
= δab (4.81)

To be precise, this only gives the contribution of 〈J(x1)J(x3)〉〈J(x2)J(x4)〉. The contribu-

tion of 〈J(x1)J(x4)〉〈J(x2)J(x3)〉 can be then obtained by applying a permutation of J ’s

either to the right or to the left three-point structure of Iab.

Here we encounter a slight difficulty, since we need to invert the three-point pairing

between structures for 〈JJO〉 and 〈J̃ J̃Õ〉. Now, while our structures 〈JJO〉 are taken to

be conserved, the structures 〈J̃ J̃Õ〉 do not have the right scaling dimensions in order for us

to impose conservation constraints. In particular, J̃ has scaling dimension 1, which makes

it a one-form. If we do not impose any constraints on J̃ , the three-point pairing matrix is

not going to be a square matrix, so we have to be careful with what is meant by the inverse.

43Here n is not necessarily the same as n in (4.77).
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Specifically, we need to satisfy (4.81). In this expression, the sum is over index d for

which there are more choices, as discussed above, than for b or a. This implies that the

definition (4.81) of the inverse pairing is ambiguous. In particular, we can always replace(
〈J1J2Õ〉(b), 〈J̃1J̃2O〉(d)

)−1
−→

(
〈J1J2Õ〉(b), 〈J̃1J̃2O〉(d)

)−1
+ vdyb (4.82)

as long as

vd

(
〈J1J2Õ〉(a), 〈J̃1J̃2O〉(d)

)
= 0. (4.83)

In order for (4.80) to be consistent, we must have

vdS([J̃1]J̃2O∆,j,±)de = 0 (4.84)

for all such vd.

Vectors vd subject to (4.83) have to exist simply due to a mismatch of the number of

structures 〈JJÕ〉 and 〈J̃ J̃O〉, but it is also possible to understand their existence more

conceptually. Equation (4.83) simply means that the structure vd〈J̃1J̃2O〉(d) has vanishing

pairing with all 〈JJÕ〉 structures. Such structures are easy to find. Indeed, let us set

vd〈J̃(x1)J̃(x2)Õ(x3)〉(d) = 〈dφ(x1)J̃(x2)Õ(x3)〉, (4.85)

where φ is a scalar of dimension 0 (i.e. a 0-form), d is the exterior derivative, and the

structure on the right is arbitrary. Pairings of this structure with 〈JJÕ〉 then vanish by

integration by parts and conservation of J .

This means that from the point of view of three-point pairings we should be looking

at the gauge equivalence classes of J̃ under the gauge equivalence

J̃ ∼ J̃ + dφ. (4.86)

It is easy to check that the counting of 〈J̃ J̃O〉 structures, along the lines of [40], gives the

same number of gauge equivalence classes as the number of 〈JJO〉 structures. Thus all

vectors vd can be obtained from (4.85).44

This notion of gauge equivalence extends to other types of conserved currents. For

example, for the shadow of stress-tensor T̃ , the role of φ is played by vectors ξ of dimen-

sion −1 and the exterior derivative is replaced by the operator which participates in the

conformal Killing equation,

T̃µν ∼ T̃µν + ∂(µξν) − trace. (4.87)

This point of view makes it clear why (4.84) must hold: interpreting this equation as

taking the shadow transform of a pure gauge structure, we can integrate by parts and use

the conservation of the 〈JJ〉 two-point function to show that the shadow transform is 0.45

44We have verified this claim by an explicit calculation in several examples.
45This is a bit subtle due to the need to regularize the shadow transform. We always regularize by analytic

continuation in scaling dimension, and one way to do this is to perform shadow transform in Fourier space,

as described earlier in this section. In even dimensions Fourier transform of current two-point function

diverges due to existence of possible contact terms, but in odd dimensions, which is what we care about

here, it shows that regularized two-point function is conserved.
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In practice, however, we will simply start with the MFT four-point function for more

general operators J with ∆J 6= d− 1 and continue analytically to ∆J = d− 1. In this way

we find a larger matrix

Î
âb̂

(∆, j,±), (4.88)

where â and b̂ run through non-conserved structures for 〈JJO〉. At ∆J = d−1 we find that

Î
âb̂

(∆, j,±) = T aâ T
b
b̂
Iab(∆, j,±), (4.89)

where T aâ are the coordinates of conserved structure a in the non-conserved basis â. This

equation then determines Iab.
46 This analytic continuation also helps to distinguish the

physical poles in Iab(∆, j,+) at ∆ = 2∆J+2n+j−2 (or ∆ = 2∆j+2n+j−1 for Iab(∆, j,−))

from various unphysical poles similarly to the case of scalar operators in section 3.5.1.

4.3.3 The OPE coefficients

It is now straightforward to use the Fourier algorithm to compute the shadow coefficients

and combine them into OPE coefficients. As mentioned above, care should be taken to

first compute the residues at ∆ = 2∆J + . . . and then take the limit ∆J → 2. The resulting

coefficients are as follows.

Parity-even operators. For parity-even operators we first define

Pab(∆
+
n,j , j,+) =

π3/22−2(n+1)Γ
(
j + 3

2

)
Γ(j + n+ 1)Γ(j + 2n− 1)

Γ(j + 2)Γ
(

1
2 − n

)2
Γ(2n+ 1)Γ

(
j + n+ 3

2

)
Γ
(
j + 2n+ 1

2

)pab(n, j,+),

(4.90)

where ∆+
n,j = 2n+ j + 2. Note that only even j is allowed. We then have for n > 0,

p11(n,j,+) = (j+1)
(
2(j−1)j

(
j
(
2j2+j−7

)
−5
)
n+(j−1)2j2(j+1)(j+2)+

+4
(
j4−4j3+11j+4

)
n2−16((j−3)j−3)n3+32n4

)
, (4.91)

p12(n,j,+) = j(j+1)(j+2n−1)(j+2n+1)
(
j
(
j2+j−2

)
+2((j−1)j−3)n−4n2

)
, (4.92)

p22(n,j,+) = j(j+2n−1)(j+2n+1)
(
4
(
j2+j−1

)
n2+2(2j+1)

(
j2+j−1

)
n+

+(j−1)j(j+1)(j+2)
)
, (4.93)

and p21 = p12. For n = 0 we have

p11(0, j,+) = p12(0, j,+) = p22(0, j,+) =
1

2
(j − 1)2j2(j + 1)2(j + 2). (4.94)

These values are half those obtained from analytic continuation in n.47 Note that for

n = 0 there are no operators with j = 0. For n > 0 and j = 0 only p11 is non-vanishing,

consistently with our definition of the basis of three-point structures.

Note that according to (D.19) even-spin operators in spinor convention are hermitian,

and thus their OPE coefficients in the q-basis are real. Thus, the matrices Pab(∆
+
n,j , j,+)

should be positive-definite. We have explicitly verified this for n, j ≤ 20.

46The fact that Î takes this form provides a non-trivial consistency check on the whole calculation.
47An analogue for this situation is limε→0 resx=n

x+ε
(x−n)(x+2ε)

, where x plays the role of ∆ and ε the role

of ∆J − 2. This shows the importance of taking the residues before the limit ∆J → 2.
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Parity-odd operators. For parity-odd operators we define, similarly to the parity-even

case,

P (∆−n,j , j,−) =
π3/2j2−2(n+1)Γ

(
j+ 3

2

)
Γ(j+n+2)Γ(j+2n+2)

Γ(j)Γ
(
−n− 1

2

)2
Γ(2n+2)Γ

(
j+n+ 3

2

)
Γ
(
j+2n+ 3

2

)p(n,j,−), (4.95)

where we don’t use the structure indices a, b since there is at most one parity-odd structure

for any spin and ∆−n,j = 2n + j + 3. Here both even and odd j are allowed, and we have

for n ≥ 0 (only n ≥ 1 is allowed for j = 0)

p(n, j,−) =


(j+2n)(j+2n+2)(j+2n+3)

j2(j+2n+1)
, even j,

− (j−1)(j+2)
j(j+1) , odd j.

(4.96)

Note that according to (D.19), odd-spin operators in our spinor convention are anti-

hermitian, and thus their OPE coefficients in the q-basis are pure imaginary, which leads

to the negative values of p(n, j−) for odd j.

Comparison with numerical results. We can compare our results with the table

(A.24) in appedix A.6 of [14]. We define, with the right hand side in their notation

q11 = “(λ̃
(1)
JJO+)2”, q12 = q21 = “λ̃

(1)
JJO+ λ̃

(2)
JJO+”, q11 = “(λ̃

(2)
JJO+)2”, (4.97)

where we use quotes because these coefficients are in general sums corresponding to several

operators. We then have

p = MqMT , (4.98)

where

M = 2−∆ i−j2−j/2

(j + 2)(∆− j)

(
1 −1

j(∆− 2) 2∆− j2

)
. (4.99)

For parity odd structures we have (for j > 0)

M = 2−∆+2

{
ij2

j
2
−3j, even j,

ij2
j
2
−3(j + 2), odd j.

(4.100)

This transformation rule can be obtained by tracing relation of λ̃ of [14] to Vi, Hij struc-

tures, and then the relation of Hij structures to the q-basis.48 With this identification, our

formula matches all the data presented in [14].

48We also had to add the 2−∆ factor in parity-even case and i2−∆+2 factor in parity-odd case to match

the results of [14]. This is possibly due to our misinterpretation of their conventions. We have checked

that our normalization is consistent with our conventions by explicitly computing the contribution of the

operators JµJ
µ and εµνλJµ∂νJλ.
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4.4 OPE coefficients of 3d stress-tensor MFT

In this section, we state the results for the OPE coefficients of the MFT stress-tensor

four-point function

〈T (x1)T (x2)T (x3)T (x4)〉=
= 〈T (x1)T (x2)〉〈T (x3)T (x4)〉+〈T (x1)T (x3)〉〈T (x2)T (x4)〉+〈T (x1)T (x4)〉〈T (x2)T (x3)〉,

(4.101)

which can be computed in exactly the same way as for 〈JJJJ〉. Normalization of the 〈TT 〉
two-point function we use is the same as for all 3d operators,

〈T (x1, z1)T (x2, z2)〉 =
(z1 · I(x12) · z2)2

x6
12

. (4.102)

The three-point tensor structures for 〈TTO〉 follow the same pattern as for 〈JJO〉, ex-

cept for low spins. In particular we have the following possibilities for O of spin j and

dimension ∆,

• for j = 0 (all ∆ ≥ 1
2) and j = 2 (∆ > 3) there exists one parity-even and one

parity-odd structure,

• for j = 2 and ∆ = 3 there exist two parity-even structures and one parity-odd

structure,

• for even j ≥ 4 there exist two parity-even structures and one parity-odd structure,

• for odd j ≥ 5 there exist one parity-odd structure.

Parity-even structures. We are going to use the same basis of tensor structures as

in [15]. For even j ≥ 4 the parity-even structures can be identified as

〈TTO+
j 〉

(1) = (−i)j2
j
2
−3(j − 3)4(j + 4)(∆− 1)(4∆(∆− 2)− 3j(j + 1) + 6)[123̄]++

+ (−i)j2
j
2
−5(j − 3)8[2̄20] + . . . , (4.103)

〈TTO+
j 〉

(2) = −(−i)j2
j
2
−4(j − 2)3(∆− 1) (∆(∆ + 1)− 3j(j + 1) + 36) [123̄]++

+ (−i)j2
j
2
−6(j − 3)4 (∆(7∆− 13)− j(j + 1) + 12) [224̄] + . . . , (4.104)

where as before we use n̄ = −n inside q-basis structures. For j = 0 we define

〈TTO+
0 〉

(1) =
1

(∆− 3)(∆ + 1)
lim
j→0
〈TTO+

j 〉
(2), (4.105)

and for j = 2 we define

〈TTO+
2 〉

(1) = −8 lim
j→2
〈TTO+

j 〉
(2). (4.106)

– 53 –



J
H
E
P
1
0
(
2
0
1
9
)
2
1
7

Parity-odd structures. For even j ≥ 4 the parity-odd structures can be identified as

〈TTO−j 〉
(1) = −(∆− 1)4(j − 2)3(−i)j+12

j
2

+1[123̄]− + . . . , (4.107)

while for odd j ≥ 5 we have

〈TTO−j 〉
(1) =−(−i)j+12j/2(∆−2)(∆−1)(j−3)4(j+4)(4∆(∆−2)−j(j+1)+6)[123̄]−+. . . .

(4.108)

For j = 0 we write

〈TTO−0 〉
(1) =

1

4(∆− 5)(∆− 2)(∆− 1)∆(∆ + 2)
lim
j→0
〈TTO−j 〉

(1), (4.109)

and for j = 2 we write

〈TTO−2 〉
(1) =

1

4(∆− 5)(∆ + 2)
lim
j→2
〈TTO−j 〉

(1), (4.110)

where we take the limits of even-spin structures.

4.4.1 Exchanged operators

Similarly to current MFT, the exchanged operators are given by normal-ordered products

Tµ1ν1(x)∂σ1 · · · ∂σk∂2nTµ2ν2(x) + desc.− traces(σi) (4.111)

We have computed the degeneracies of these operators by taking the symmetric square of

the character of the Verma module corresponding to T , and decomposing into irreducible

characters. We find that there exist the following operators,49

• parity-even operators O+
j with ∆+

n,j = 2n + j + 2, for all even j ≥ 0, n ≥ 0, and

∆+
n,j ≥ 6. The degeneracies of the operators are the same as the number of three-point

tensor structures, except that for n = 0 there is at most one operator.

• parity-odd operators O−j with ∆−n,j = 2n+ j + 3, for all j ≥ 0, n ≥ 0, and ∆−n,j ≥ 7,

except j = 1 and j = 3. All degeneracies are equal to 1.

4.4.2 The OPE coefficients

Parity-even operators. For parity-even operators of even spin j ≥ 4 and n ≥ 1 we have

Pab(∆
+
n,j , j,+) =

π3/22−j−2n−1Γ
(
j+ 3

2

)
Γ(j+n+1)Γ(j+2n−3)

9j!(j+2n+1)4Γ
(

1
2−n

)2
Γ(2n)Γ

(
j+n+ 1

2

)
Γ
(
j+2n+ 1

2

)pab(n,j,+),

(4.112)

where ∆+
n,j = 2n+ j + 2 and

pab(n, j,+) =

 1+
(2n+j−3)8

(j−3)8
4n(1+2j+2n) −1

−1 4n(1 + 2j + 2n)

 . (4.113)

49Here n is not necessarily the same as n in (4.111).
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Note that in these expressions, we used the rising Pochhammer symbols (a)k = a(a +

1) · · · (a+ k − 1) with k = 4 and k = 8. For even j ≥ 4 and n = 0 we have

Pab(∆
+
0,j , j,+) =

√
π2−j−4(2j + 1)Γ(j + 1)2

9(j − 3)(j − 2)(j − 1)jΓ
(
j + 3

2

)
Γ(j + 5)

(
1 0

0 0

)
. (4.114)

As in the case of four currents, this is 1
2 of the n→ 0 limit of the previous expression.

For j = 2 we have n ≥ 1 and

P (∆+
n,2, 2,+) =

5
√
π16−n−3nΓ(2n+ 3)

3(n+ 3)(2n− 1)(2n+ 1)2(2n+ 3)2Γ
(
2n+ 5

2

) . (4.115)

For j = 0 we have n ≥ 2 and

P (∆+
n,0, 0,+) =

(n− 1)2nΓ(2n− 3)Γ(2n+ 4)

36(n+ 1)2(n+ 2)(2n+ 1)Γ(4n)
. (4.116)

The expressions for j = 0 and j = 2 are just analytic continuations of P22 from j ≥ 4

case, times an extra factor needed to account for definitions (4.105) and (4.106) of tensor

structures at j = 0 and j = 2. For j = 0 this extra factor is (∆+
n,0 − 4)2(∆+

n,0 + 1)2, while

for j = 2 it is 1
64 .

Parity-odd operators. For parity-odd operators with spin j ≥ 4 and n ≥ 0 we have

P (∆−n,j , j,−) =−
π2j+2n−6Γ

(
j+ 3

2

)
Γ(j+n+2)Γ(j+2n+1)2

9j!(j+2n+2)2Γ
(
−n− 1

2

)2
Γ(2n+2)Γ

(
j+n+ 3

2

)
Γ(2j+4n+3)

p(n,j,−),

(4.117)

where ∆−n,j = 2n+ j + 3 and

p(n, j,−) =


(2n+j+1)2(2n+j+2)2

4(2n+j−2)8
, even j,

1
(j−3)8

, odd j.
(4.118)

For j = 2 we have n ≥ 1 and

P (∆−n,2, 2,−) = − 5n(2n+ 7)Γ(2n+ 3)2

384(2n+ 1)(2n+ 5)2Γ(4n+ 7)
. (4.119)

For j = 0 we have n ≥ 2 and

P (∆−n,0, 0,−) = − (n− 1)n(2n+ 3)(2n+ 5)Γ(2n+ 3)2

576(n+ 2)(2n− 1)(2n+ 1)Γ(4n+ 3)
. (4.120)

Note that the coefficients P are negative because unitarity requires the OPE coefficients

of our parity-odd structures to be pure imaginary.

Again, the expressions for j = 0 and j = 2 are analytic continuation of P from j ≥ 4

case, times an extra factor needed to account for definitions (4.109) and (4.110) of tensor

structures for j = 0 and j = 2. For j = 0 this extra factor is 16(∆−n,0−5)2(∆−n,0−3)2(∆−n,0−
1)2(∆−n,0)2(∆−n,0 + 2)2, while for j = 2 it is 16(∆−n,2 − 5)2(∆−n,2 + 2)2.
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Comparison with numerical calculation. We have also numerically determined the

OPE coefficients for intermediate operators with dimension ∆ ≤ 10 by series expanding

the four-point function (4.101) and matching the coefficients to explicit 〈TTTT 〉 conformal

blocks computed in [15]. The resulting numerical values are listed in appendix F. The

analytical expressions (4.112)–(4.120) perfectly match these results.
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A Alternative derivation of inner product between partial waves

The inner product between scalar partial waves was computed in [28] by examining the

OPE limit of conformal blocks. Here, we follow the same approach to verify formula (2.39)

for the inner product between partial waves in general representations.

An inner product between two partial waves is given by(
Ψ
Oi(pq)
O ,Ψ

Õ†i (p′q′)

Õ′†

)
=

∫
ddx1 · · · ddx4

vol SO(d+ 1, 1)
Ψ
Oi(pq)
O (x1, x2, x3, x4)Ψ

Õ†i (p′q′)

Õ′†
(x1, x2, x3, x4)

=
1

2d vol SO(d− 1)

∫
ddxΨ

Oi(pq)
O (0, x, e,∞)Ψ

Õ†i (p′q′)

Õ′†
(0, x, e,∞).

(A.1)

In the second line, we gauge-fixed x1 = 0, x3 = e, x4 =∞, where e is a unit vector, and set

x2 = x. The factor vol SO(d− 1) is the volume of the stabilizer group of the points 0, e,∞.

The factor 1/2d is a Fadeev-Popov determinant. (We could additionally gauge-fix x to lie

inside a 2-plane, resulting in an integral over cross-ratios, but that will not be useful in

this computation.) Let us assume that O,O′ have dimensions ∆ = d
2 + is,∆′ = d

2 + is′

with s, s′ > 0. (The case where s or s′ is negative can be obtained by using a symmetry

transformation of the partial waves under s→ −s.)
Recall that a partial wave has the decomposition into conformal blocks

Ψ
Oi(pq)
O (x1, x2, x3, x4) = S(O3O4[Õ†])qcG(pc)

O (x1, x2, x3, x4) + S(O1O2[O])pcG
(cq)

Õ
(x1, x2, x3, x4).

(A.2)

Thus, the inner product contains a term(
Ψ

(pq)
O ,Ψ

(p′q′)

Õ′†

)
⊃ S(O3O4[Õ†])qcS(Õ†3Õ

†
4[O′])q′c′

2d vol SO(d− 1)

∫
ddxG

(pc)
O (0, x, e,∞)G

(p′c′)

Õ′
(0, x, e,∞),

(A.3)

together with three other terms.
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The inner product is expected to be proportional to δ(s− s′), where ∆ = d
2 + is,∆′ =

d
2 + is′. Such a δ-function singularity can only come from the OPE limit x ∼ 0, where the

radial integral is of Mellin type. Thus, let us examine the OPE singularity in more detail.

Let us introduce the shorthand notation

pa1a2a ≡ 〈Oa1
1 (0)Oa2

2 (e)Oa(∞)〉(p),

qa3a4ā ≡ 〈Oa1
3 (0)Oa2

4 (e)O†ā(∞)〉(q),
gbc̄ ≡ 〈Ob(0)O†c̄(∞)〉 = lim

L→∞
L2∆〈Ob(0)O†c̄(Le)〉, (A.4)

where e is a unit vector. Here, the ai are indices for the Lorentz representations ρi of the

operators Oi, a is an index for the representation ρ of O, and ā is an index for the dual

reflected representation ρ† = (ρR)∗.

The leading term in the OPE limit of a block formed from p and q is

G
(pq)a1a2a3a4

O (0, x, e,∞) ∼ pa1a2aRa
b(x̂)|x|∆−∆1−∆2(g−1)bb̄q

a3a4b̄. (A.5)

Here R(x̂) is any rotation that takes the unit vector e to x̂ = x/|x|. (The result is invariant

under different choices of R(x̂) because the three-point structures are SO(d−1)-invariant.)

In the OPE limit, the integral in (A.3) becomes∫
ddxG

(pc)
O G

(p′c′)

Õ′
∼
∫
ddx

|x|d
|x|∆−∆′pa1a2aRa

b(x̂)(g−1)bb̄c
a3a4b̄p′a1a2eR

e
f (x̂)(g′−1)ff̄c′a3a4f̄

.

(A.6)

Here, g′
ff̄

= 〈Õ†f (0)Õf̄ (∞)〉. The angular integral can be performed using the Schur or-

thogonality relation, ∫
Sd−1

dx̂Ra
b(x̂)Ref (x̂) =

volSd−1

dim ρ
δeaδ

b
f . (A.7)

(To derive the coefficient out front, take the trace with respect to the indices a, e and use

that Ra
b(x̂) and Rab(x̂) are inverse-transposes.) Furthermore, we have

(g−1)bb̄(g
′−1)bf̄ =

dim ρ

gbb̄g
′bb̄
δf̄
b̄
, (A.8)

since the product gbb̄g
′bf̄ is proportional to the identity matrix. Thus, we get

∼ volSd−1

gbb̄g
′bb̄

(pa1a2ap′a1a2a)(c
a3a4b̄ca3a4b̄

)

∫
dr

r
r∆−∆′

=
volSd−1(2dvolSO(d−1))2

〈Ob(0)O†b̄(∞)〉〈Õb̄(∞)Õ†b(0)〉

(
〈O1O2O〉(p),〈Õ†1Õ

†
2Õ
†〉(p′)

)(
〈O3O4O†〉(c),〈Õ†3Õ

†
4Õ〉

(c′)
)

×πδ(s−s′)+. . . (A.9)

Here, we have computed the δ-function term coming from the region near r = 0. Larger

r contributes non-singular terms that must cancel in the final answer, since the inner
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product is proportional to a δ-function. We have also re-introduced the three-point pairings

using (2.13).

Once we have a δ-function restricting ∆ = ∆′, we can use

S(O3O4[Õ†])qcS(Õ†3Õ
†
4[O])q

′
c′

(
〈O3O4O†〉(c), 〈Õ†3Õ

†
4Õ〉

(c′)
)

=
(
〈O3O4S[Õ†]〉(q), 〈Õ†3Õ

†
4S[O]〉(q′)

)
=
(
〈O3O4Õ†〉(q), 〈Õ†3Õ

†
4S

2[O]〉(q′)
)

= N (∆, ρ)
(
〈O3O4Õ†〉(q), 〈Õ†3Õ

†
4O〉

(q′)
)
. (A.10)

Putting everything together, we find that the term (A.3) contributes(
Ψ

(pq)
O ,Ψ

(p′q′)

Õ′†

)
⊃ 2d volSd−1 vol SO(d− 1)N (∆, ρ)

〈Ob(0)O†b̄(∞)〉〈Õb̄(∞)Õ†b(0)〉

×
(
〈O1O2O〉(p), 〈Õ†1Õ

†
2Õ
†〉(p′)

)(
〈O3O4Õ†〉(q), 〈Õ†3Õ

†
4O〉

(q′)
)
πδ(s− s′)

=

(
〈O1O2O〉(p), 〈Õ†1Õ

†
2Õ†〉(p

′)
)(
〈O3O4Õ†〉(q), 〈Õ†3Õ

†
4O〉(q

′)
)

µ(∆, ρ)
πδ(s− s′),

(A.11)

where in the last line we used (2.30) to rewrite the answer in terms of the Plancherel

measure.

The inner product (A.1) contains three other terms involving integrals of GÕGÕ′ ,

GOGO′ , and GÕGO′ . The terms GÕGÕ′ , GOGO′ give radial integrals of the form∫
drr∆̃+∆̃′−d−1 and

∫
drr∆+∆′−d−1, neither of which can contribute a δ-function near r = 0

because we have restricted s, s′ > 0. Meanwhile the term GÕGO′ can contribute a δ-

function and does so with the same coefficient as in (A.11). Thus, the final answer for the

inner product is twice (A.11), which agrees with (2.39).

B Plancherel measure for spinor representation

In this appendix we compute µ(∆, S). For simplicity, first assume that d is odd. The

spinor representation is then the representation on which we have the action of Dirac

gamma matrices

{γµ, γν} = 2δµν . (B.1)

The kernel which implements the shadow transform is then given by

K∆(x) =
γµxµ
x2∆+1

, (B.2)

and its Fourier transform is given by

K∆(p) = F2∆,1γ
µpµp

2∆−1−d, (B.3)
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where F∆,J was defined in (4.18). Square of the shadow transform is then

N (∆, S)1 = K
∆̃

(p)K∆(p) = F2∆,1F2∆̃,1
γµγνpµpνp

−2 = F2∆,1F2∆̃,1
1 =

(−1)nπd cotπ∆

(∆ + 1
2 − d)d

1,

(B.4)

where we used that d = 2n+ 1. According to (2.30) we have

µ(∆, S) =
1

N (∆, S)

tr[K
∆̃

(−∞)K
∆̃

(∞)]

2d vol SO(d)
, (B.5)

where K is position space. We have

tr[K
∆̃

(−∞)K
∆̃

(∞)] = −tr[γ1γ1] = − dimS, (B.6)

and thus

µ(∆, S) = (−1)n+1

(
∆ +

1

2
− d
)
d

dimS
tanπ∆

(2π)d vol SO(d)
. (B.7)

For d = 3 and n = 1 this agrees with j = 1
2 case of (4.33). Also, one can check that (B.7)

is positive on the principal series ∆ = d
2 + is.

The above discussion gives the answer in the case of odd dimensions. In the case of

even dimension we have a slight complication since the Dirac representation is the direct

sum S ⊕ S̄, where S̄ is the reflected representation of S, with md,n = −1
2 . The shadow

kernel exchanges the two representations, and thus we now have

N (∆, S)1⊕ 1 = K
∆̃

(p)K∆(p) = F2∆,1F2∆̃,1
γµγνpµpνp

−2 = F2∆,1F2∆̃,1
1⊕ 1. (B.8)

Simplifying with d = 2n we obtain in this case

N (∆, S) =
(−1)n+1π2n

(∆ + 1
2 − d)d

. (B.9)

Equation (B.5) should be replaced with

µ(∆, S) =
1

N (∆, S)

trS [K
∆̃

(−∞)K
∆̃

(∞)]

2d vol SO(d)
, (B.10)

where we trace only over the irreducible component S. Using this we obtain

µ(∆, S) = (−1)n
(

∆ +
1

2
− d
)
d

dimS
1

(2π)d vol SO(d)
. (B.11)

This is again positive on the principal series and in d = 4 agrees with (`, ¯̀) = (1, 0) case

of (3.32).
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C Details of the 4d formalism

In this appendix we provide all the necessary details of the 4d formalism. In secttion C.1

we start by setting up the notation and conventions. In section C.2 we define the main

object used in harmonic analysis, namely the conformally invariant pairing. We proceed

in section C.3 by carefully discussing properties of the 4d weight-shifting operators under

integration by parts, their bubble coefficients and the two-point 6j-symbols. We provide the

definition of the shadow transform, compute its commutation properties with the 4d weight-

shifting operators and derive the shadow square transformation in section C.4. We conclude

in section C.5 by computing conformally invariant pairing for the two-point structure and

for several examples of three-point structures.

We point out right away that in this appendix we work in the Minkowski metric. This

is in contrast to section 2 where it is more natural to use the Euclidean metric to introduce

harmonic analysis. All our results obtained here however remain unchanged also in the

Euclidean metric.

C.1 Conventions

In the Minkowski metric the conformal group is SO(4, 2). We denote the representation

of local operators as V∆,ρ, where ρ is the representation of the spin sub-group SO(1, 3).

We will work with its covering group SL(2,C). All its representations are labeled by a

pair of non-negative integers (`, ¯̀) which also provide the number of undotted and dotted

indices respectively in the two-component formalism.50,51 In what follows we use the 4d

conventions of appendix A in [37].

We define a local operator transforming in the representation V∆,`,¯̀ in the index-free

notation as

O(`,¯̀)
∆ (x, s, s̄) ≡ Oβ̇1...β̇¯̀

α1...α` × (sα1 · · · sα`)
(
s̄β̇1
· · · s̄β̇¯̀

)
, (C.1)

where s and s̄ are spinor polarizations.52 To go from index-free to index-full notation

one takes derivatives with respect to spinor polarizations. For convenience we define the

following short-hand notation

[∂s]
α ≡ ∂

∂sα
, [∂s̄]

α̇ ≡ ∂

∂s̄α̇
, [∂s]α ≡ −

∂

∂sα
, [∂s̄]α̇ ≡ −

∂

∂s̄α̇
. (C.2)

The minus signs are introduced to consistently rise and lower indices in a standard way

[∂s]α = εαβ [∂s]
β , [∂s̄]α̇ = εα̇β̇ [∂s̄]

β̇ . (C.3)

50There are in fact four different representations (`, ¯̀), (`∗, ¯̀), (`, ¯̀∗) and (`∗, ¯̀∗) which are however

equivalent to each other. The superscript ∗ stays for dual. The equivalence is established by products of

ε-symbols εαβ , εαβ , εα̇β̇ and εα̇β̇ . The representation (`, ¯̀) is defined as an object with ` lower undotted and
¯̀ lower dotted indices. The dual version in each index is represented by rising relevant indices (undotted,

dotted or both). In index-full notation we never distinguish between equivalent representation since it is

obvious what representation we deal with from the position of indices.
51In the language of section 2.1 the reflected representation is (`, ¯̀)R = (¯̀, `), the dual representation is

(`, ¯̀)∗ = (`∗, ¯̀∗) ∼ (`, ¯̀) and the conjugate representation (`, ¯̀)† = (`, ¯̀)∗R = (¯̀∗, `∗) ∼ (¯̀, `). Here ∼ stands

for equivalent to.
52In the language of the footnote 50 we actually encode an operator transforming in (`, ¯̀∗) spin repre-

sentation.
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We have then

Oβ̇1...β̇¯̀
α1...α` =

(−1)`

`! ¯̀!
[∂s]α1 . . . [∂s]α` [∂s̄]

α̇1 . . . [∂s̄]
α̇¯̀ O(`,¯̀)

∆ (x, s, s̄). (C.4)

We will do several computations in the conformal frame. For that we will also need

the decomposition of auxiliary spinors into their components

sα ≡

(
ξ

η

)
, sα = εαβsβ =

(
η

−ξ

)
, s̄α̇ ≡

(
ξ̄

η̄

)
, s̄α̇ = εα̇β̇sβ̇ =

(
η̄

−ξ̄

)
, (C.5)

where the ε-symbol has the following components

ε12 = −ε21 = −ε12 = ε21 = +1. (C.6)

The convention for σµ
αβ̇

and σ̄µ α̇β matrices is as follows σ̄0 = +σ0, σ̄1 = −σ1, σ̄2 = −σ2

and σ̄3 = −σ3, where

σ0 =

(
−1 0

0 −1

)
, σ1 =

(
0 +1

+1 0

)
, σ2 =

(
0 −i

+i 0

)
, σ3 =

(
+1 0

0 −1

)
. (C.7)

C.2 Conformally invariant pairing

Let us now define a full contraction of spin indices for a pair of local operators O in the

spin representation (`, ¯̀) and O′ in the dual representation (`, ¯̀)∗

Oβ̇1...β̇¯̀
α1...α` O′

α1...α`
β̇1...β̇¯̀

= εα1β1 . . . εα`β`εβ̇1α̇1
. . . εβ̇¯̀α̇¯̀

Oβ̇1...β̇¯̀
α1...α` O′

α̇1...α̇¯̀

β1...β`
. (C.8)

In index-free formalism the contraction of indices (C.8) is written as follows

O(`,¯̀)
∆ (x, s, s̄)

←→
G

(`,¯̀)
s,s̄ O

(`,¯̀)
∆′ (x, s, s̄), (C.9)

where
←→
G s,s̄ is the “gluing” differential operator defined using (C.4) as

←→
G

(`,¯̀)
s,s̄ ≡

1

`!2

∏̀
i=1

[
←−
∂ s]αi ε

αiβi [
−→
∂ s]βi ×

1
¯̀!2

¯̀∏
j=1

[
←−
∂ s̄]

β̇j εβ̇j α̇j [
−→
∂ s̄]

α̇j . (C.10)

We are finally in the position to define a conformally invariant pairing(
O(`,¯̀)

∆ ,O(`,¯̀)

∆̃

)
≡
∫
d4xO(`,¯̀)

∆ (x, s, s̄)
←→
G

(`,¯̀)
s,s̄ O

(`,¯̀)

∆̃
(x, s, s̄), ∆̃ ≡ 4−∆. (C.11)

We stress that the expression (C.11) is formal in a sense that the operators here are merely

an indication of the representations used. Thus, despite the seeming spin-statistics these

operators must always commute. Due to the definitions (C.9) and (C.10) the following

property holds (
O(`,¯̀)

∆ ,O(`,¯̀)

∆̃

)
= (−1)`+

¯̀×
(
O(`,¯̀)

∆̃
,O(`,¯̀)

∆

)
. (C.12)
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C.3 Properties of weight-shifting operators

We study here in details the properties of the 4d weight-shifting operators (3.11) and (3.12).

They are naturally defined in 6d embedding formalism. We discuss their 4d form in sec-

tion C.3.1. We proceed in section C.3.2 by studying their integration by parts properties

with respect to conformally invariant pairings. We summarize some other properties of

the 4d weight-shifting in section C.3.3 such as the two-point 6j-symbols and the bubble

coefficients.

C.3.1 6d to 4d projection

The 6d embedding space in the light-cone coordinates is defined as follows

XM = (Xµ, X+, X−), µ = 1, . . . , 4, (C.13)

with the metric

ηµν = {−,+,+,+}, η+− = η−+ =
1

2
. (C.14)

In what follows we use indices a, b for the fundamental and anti-fundamental represen-

tations of SU(2, 2). The isomorphism between SO(2, 4) and SU(2, 2) conformal algebras is

established via the matrices

Σµ
ab =

(
0 −(σµε) β̇

α

(σ̄µε)α̇β 0

)
, Σ+

ab =

(
0 0

0 2 εα̇β̇

)
, Σ−ab =

(
−2 εαβ 0

0 0

)
, (C.15)

Σ
µab

=

(
0 −(εσµ)α

β̇

(εσ̄µ) β
α̇ 0

)
, Σ

+ ab
=

(
−2 εαβ 0

0 0

)
, Σ

− ab
=

(
0 0

0 2 εα̇β̇

)
. (C.16)

We choose the following simple uplift of the 4d operator O into the 6d operator O

O(X,S, S) =
(
X+
)−κO(Xµ

X+
, Sα, Sα̇

)
, κ ≡ ∆ +

`+ ¯̀

2
. (C.17)

We always set X+ = 1 where there is no place for confusion. For 6d coordinates we have

XM
∣∣∣
proj

= (xµ, 1, −x2) (C.18)

or equivalently

Xab

∣∣∣
proj

=

(
−εαβ −xαβ̇

xα̇β −εα̇β̇x2

)
, X

ab
∣∣∣
proj

=

(
εαβx2 −xαβ̇
xα̇

β εα̇β̇

)
, (C.19)

where we have defined

xαβ̇ ≡ xµσ
µ

αβ̇
, xα̇β ≡ xµσ̄µα̇β , (C.20)

xα
β̇ ≡ xµ(σµε)α

β̇ , xα̇β ≡ xµ(σ̄µε)α̇β , xαβ̇ ≡ xµ(εσµ)αβ̇ , xα̇
β ≡ xµ(εσ̄µ)α̇

β . (C.21)

For 6d polarizations we have

Sa

∣∣∣
proj

= (sα, −xα̇λsλ), S
a
∣∣∣
proj

= (s̄λ̇x
λ̇α, s̄α̇). (C.22)
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Using the uplift (C.17) one can also deduce the projection of the 6d derivatives

∂

∂XM

∣∣∣∣∣
proj

= (∂µ, −κ− x · ∂, 0),
∂

∂Sb

∣∣∣∣∣
proj

= (∂βs , 0),
∂

∂S
b

∣∣∣∣∣
proj

= (0, ∂β̇s̄ ). (C.23)

See definition (C.2). Extra care should be taken when dealing with derivatives of second

order and higher in coordinates, we will not need them however in this work. The first

entry in (C.23) can be written equivalently as

∂ab

∣∣∣
proj

=

(
0 −∂αβ̇

∂α̇β −2 (κ+ x · ∂) εα̇β̇

)
, ∂

ab
∣∣∣
proj

=

(
2 (κ+ x · ∂) εαβ −∂αβ̇

∂α̇
β 0

)
, (C.24)

where the 4d derivatives are defined in an exact manner as the 4d coordinates in (C.21)

with xµ replaced by ∂µ.

Let us project some elementary pieces entering the weight-shifting operators (3.11)

T a1 ≡Sb∂
ab
, T a1

∣∣∣
proj

= (2sα (κ+x·∂)+(sx∂)α, −(s∂)α̇), (C.25)

T2≡
(
S∂∂S

)
=−T a1

∂

∂S
a , T2

∣∣∣
proj

= (s∂∂s̄), (C.26)

T3≡ (∂S∂S), T3

∣∣∣
proj

= 0, (C.27)

T a4 ≡Xbc∂
ab
∂cS , T a4

∣∣∣
proj

= (−2(κ+x·∂)∂αs −(∂sx∂)α, (∂s∂)α̇), (C.28)

T5≡Xbc∂
ba
∂cS∂S,a =−T a4 ∂S,a, T5

∣∣∣
proj

=−(∂s∂∂s̄). (C.29)

Combining them we get the projection of the weight-shifting operators from the 6d em-

bedding space to the 4d physical space

Da−0+

∣∣∣
proj

=
(
s̄α̇x̄

α̇α, s̄α̇
)
, (C.30)

Da−0−

∣∣∣
proj

=
(
∂s̄ α̇x̄

α̇α, ∂s̄ α̇
)
, (C.31)

Da++0

∣∣∣
proj

=
(
. . . , −ā× (s∂)α̇ + s̄α̇(s∂∂s̄)

)
, (C.32)

Da+−0

∣∣∣
proj

=
(
. . . , (c+ ¯̀)× (∂s∂)α̇ + (∂s∂ s̄)∂s̄ α̇

)
. (C.33)

In the very last expression we have used the relation

s̄α̇(∂s∂∂s̄) = (s̄∂s̄)(∂s∂)α̇ + (∂s∂ s̄)∂s̄ α̇, (C.34)

which follows from the two identities

εα̇λ̇ε
β̇τ̇ = −δβ̇α̇δ

τ̇
λ̇

+ δτ̇α̇δ
β̇

λ̇
⇒ s̄α̇∂

β̇
s̄ = (s̄∂s̄) δ

β̇
α̇ + s̄β̇∂s̄ α̇, (s̄∂s̄)O(`,¯̀) = ¯̀O(`,¯̀). (C.35)

We omit some parts of the formulas (C.30)–(C.33), namely the α component for the last

two operators. For understanding the integration by parts properties (addressed in the
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next section) it is enough to look only at the α̇ component. Analogous expressions can be

written for the weight-shifting operators (3.12).

D−+0
a

∣∣∣
proj

= +(sα, −xα̇βsβ), (C.36)

D−−0
a

∣∣∣
proj

= −(∂s α, −xα̇β∂s β), (C.37)

D+0+
a

∣∣∣
proj

=
(
− a× α(∂s̄) + sα(s̄∂∂s), . . .

)
, (C.38)

D+0−
a

∣∣∣
proj

=
(
− (c+ `)× α(∂∂s̄)− (s∂∂s̄)∂s α, . . .

)
. (C.39)

C.3.2 Integration by parts

We discuss here the conformally covariant pairing (C.9) in a presence of a weight-shifting

operator on one side. We will see how in this situation the weight-shifting operator can be

moved to another side of the pairing. We call this an integration by parts procedure. We

start by considering spinor polarizations and then move to discussing the 4d weight-shifting

operators (3.11) and (3.12).

Pairing of covariant objects. We start by considering the following pairing(
sαO(`, ¯̀)

∆ ,O(`+1, ¯̀)

∆̃

)
=

∫
d4x sαO(`, ¯̀)

∆ (x, s, s̄)
←→
G

(`+1,¯̀)
s,s̄ O(`+1, ¯̀)

∆̃
(x, s, s̄)

=
(−1)`+1

(`+ 1)! ¯̀!

∫
d4xO(`, ¯̀)

∆ (x, ∂s, ∂s̄)∂
α
s O

(`+1, ¯̀)

∆̃
(x, s, s̄)

= − 1

`+ 1

∫
d4xO(`, ¯̀)

∆ (x, s, s̄)
←→
G

(`,¯̀)
s,s̄ ∂αs O

(`+1, ¯̀)

∆̃
(x, s, s̄)

= − 1

`+ 1

(
O(`, ¯̀)

∆ , ∂αs O
(`+1, ¯̀)

∆̃

)
. (C.40)

By using (C.12) and making the replacement `→ `− 1 and ∆↔ ∆̃ the result (C.40) can

be brought into an equivalent form which reads as(
∂αs O

(`, ¯̀)
∆ ,O(`−1, ¯̀)

∆̃

)
= +`

(
O(`, ¯̀)

∆ , sαO(`−1, ¯̀)

∆̃

)
. (C.41)

In an analogous way one can write the following expressions(
s̄α̇O(`, ¯̀)

∆ ,O(`, ¯̀+1)

∆̃

)
= +

1
¯̀+ 1

(
O(`, ¯̀)

∆ , ∂s̄ α̇O(`, ¯̀+1)

∆̃

)
, (C.42)(

∂s̄ α̇O(`, ¯̀)
∆ ,O(`, ¯̀−1)

∆̃

)
= −¯̀

(
O(`, ¯̀)

∆ , s̄α̇O(`, ¯̀−1)

∆̃

)
. (C.43)

Finally let us use (C.42) to write(
s̄α̇∂

β̇
s̄ O

(`, ¯̀)
∆ ,O(`, ¯̀)

∆̃

)
= +

1

`

(
∂β̇s̄ O

(`, ¯̀)
∆ , ∂s̄ α̇O(`, ¯̀)

∆̃

)
. (C.44)

We can also rewrite this relation using (C.12), replacing ∆↔ ∆̃ and renaming the spinor

indices as α↔ β. We get(
O(`, ¯̀)

∆ , s̄β̇∂
α̇
s̄ O

(`, ¯̀)

∆̃

)
= −1

`

(
∂s̄ β̇ O

(`, ¯̀)
∆ , ∂α̇s̄ O

(`, ¯̀)

∆̃

)
. (C.45)
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Comparing the expressions (C.44) and (C.45) we finally conclude that(
s̄α̇∂

β̇
s̄ O

(`, ¯̀)
∆ ,O(`, ¯̀)

∆̃

)
= −

(
O(`, ¯̀)

∆ , s̄β̇∂s̄ α̇O(`, ¯̀)

∆̃

)
. (C.46)

Analogously the following holds(
sα∂s β O

(`, ¯̀)
∆ ,O(`, ¯̀)

∆̃

)
= −

(
O(`, ¯̀)

∆ , sβ∂
α
s O

(`, ¯̀)

∆̃

)
. (C.47)

Integration by parts procedure. Consider now the conformally invariant pairing de-

fined in (C.11). Let us study it in the presence of weight-shifting operators. As discussed

in section 3.4 the following relation holds(
DaO(`,¯̀)

∆ ,O(`′,¯̀′)

∆̃′

)
=
(
O(`,¯̀)

∆ , (Da)∗O(`′,¯̀′)

∆̃′

)
, (C.48)

where (Da)∗ is the adjoint weight-shifting operator to Da. To determine its explicit expres-

sion one needs to know first how each element of the weight-shifting operator transforms

when moved from one side of the pairing to another: Da → (Da)∗. For coordinates and

space-time derivatives we have

xµ → xµ, ∂µ → −∂µ. (C.49)

The second entry follows from an ordinary integration by parts procedure with dropped

boundary terms. Polarizations and polarization derivatives transform according to the

previous paragraph as

sα → − 1

`+ 1
∂αs , ∂αs → +`sα, s̄α̇ → +

1
¯̀+ 1

∂s̄ α̇ ∂s̄ α̇ → − ¯̀̄sα̇, (C.50)

together with

s̄α̇∂
β̇
s̄ → −s̄β̇∂s̄ α̇, sα∂s β → −sβ∂αs . (C.51)

Here we assume that they act on the operator in the left-hand side in a representation

[∆, `, ¯̀]. Using these rules, the relation (C.34) and the definitions (3.14) we see that under

the “integration by parts” we have for instance

Da−0+

∣∣∣
proj
←→ Da−0−

∣∣∣
proj

, Da++0

∣∣∣
proj
←→ Da+−0

∣∣∣
proj

. (C.52)

Performing a straightforward computation we can restore also all the proportionality coef-

ficients. We provide here the final result(
Da−0+O

(`,¯̀)
∆ , O

(`,¯̀+1)

∆̃+1/2

)
= +

1
¯̀+ 1

(
O

(`,¯̀)
∆ , Da−0− O

(`,¯̀+1)

∆̃+1/2

)
, (C.53)(

Da−0−O
(`,¯̀)
∆ , O

(`,¯̀−1)

∆̃+1/2

)
= −¯̀

(
O

(`,¯̀)
∆ , Da−0+ O

(`,¯̀−1)

∆̃+1/2

)
, (C.54)(

Da++0O
(`,¯̀)
∆ , O

(`+1,¯̀)

∆̃−1/2

)
= − 1

`+ 1

(
O

(`,¯̀)
∆ , Da+−0 O

(`+1,¯̀)

∆̃−1/2

)
, (C.55)(

Da+−0O
(`,¯̀)
∆ , O

(`−1,¯̀)

∆̃−1/2

)
= +`

(
O

(`,¯̀)
∆ , Da++0 O

(`−1,¯̀)

∆̃−1/2

)
. (C.56)
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Analogously one can also obtain(
D−+0
a O

(`,¯̀)
∆ , O

(`+1,¯̀)

∆̃+1/2

)
= +

1

`+ 1

(
O

(`,¯̀)
∆ , D−−0

a O
(`+1,¯̀)

∆̃+1/2

)
, (C.57)(

D−−0
a O

(`,¯̀)
∆ , O

(`−1,¯̀)

∆̃+1/2

)
= −`

(
O

(`,¯̀)
∆ , D−+0

a O
(`−1,¯̀)

∆̃+1/2

)
, (C.58)(

D+0+
a O

(`,¯̀)
∆ , O

(`,¯̀+1)

∆̃−1/2

)
= − 1

¯̀+ 1

(
O

(`,¯̀)
∆ , D+0−

a O
(`,¯̀+1)

∆̃−1/2

)
, (C.59)(

D+0−
a O

(`,¯̀)
∆ , O

(`,¯̀−1)

∆̃−1/2

)
= +¯̀

(
O

(`,¯̀)
∆ , D+0+

a O
(`,¯̀−1)

∆̃−1/2

)
. (C.60)

From these expressions the form of (Da)∗ is obvious.

C.3.3 Bubble coefficients and the 6j-symbols

One of the most important ingredients is the two-point tensor structure. We make the

following choice in this work

〈O(`,¯̀)
∆ (x1, s1, s̄1)O(¯̀,`)

∆ (x2, s2, s̄2)〉 = i
¯̀−`X−κ12

[
Î12
]`[
Î21
]¯̀
∣∣∣
proj

, (C.61)

Îij ≡ Sai Sj a, (C.62)

Xij ≡ −2 (Xi ·Xj). (C.63)

It is naturally defined in the 6d formalism and then projected ot 4d, see section C.3.1 for

details. The form of (C.61) is chosen to be identical to (2.15) in [37]. Notice that no bar

(representing hermitian conjugation in that work) is present here. This is because we do

not deal with a full correlator but rather with its tensor structure. For the scalar case

` = ¯̀= 0 the expression (C.61) is identical to (3.24).

Bubble coefficients. Let us consider a conformally invariant pair of weight-shifting

operators (meaning that their conformal indices are contracted) acting on the same point.

Only the pairs effectively not changing the spin and scaling dimensions give a non zero

result. We call such conformally invariant operators the bubble operators, their action is

trivial and just amounts to multiplication by a constant which we call a bubble coefficient,

see (3.19). We compute these coefficients by acting with the bubble differential operators on

the two-point structure (C.61). They remain valid however also for three-point functions.

Starting from the first set of weight-shifting operators (3.11) one can form four such

pairs (
D−0+ · D

+0−
) ∣∣

[∆,`,¯̀]
=
(
D−+0 · D+−0

) ∣∣
[∆,¯̀,`]

= B1(∆, `, ¯̀), (C.64)(
D−0− · D

+0+
) ∣∣

[∆,`,¯̀]
=
(
D−−0 · D++0

) ∣∣
[∆,¯̀,`]

= B2(∆, `, ¯̀), (C.65)(
D++0 · D

−−0
) ∣∣

[∆,`,¯̀]
=
(
D+0+ · D−0−

) ∣∣
[∆,¯̀,`]

= B3(∆, `, ¯̀), (C.66)(
D+−0 · D

−+0
) ∣∣

[∆,`,¯̀]
=
(
D+0− · D−0+

) ∣∣
[∆,¯̀,`]

= B4(∆, `, ¯̀). (C.67)
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The coefficients read as

B1(∆, `, ¯̀) ≡ −1

2
¯̀(2− `+ ¯̀− 2∆)(4 + `+ ¯̀− 2∆), (C.68)

B2(∆, `, ¯̀) ≡ +
1

2
(2 + ¯̀) (2 + `− ¯̀− 2∆)(`+ ¯̀+ 2∆), (C.69)

B3(∆, `, ¯̀) ≡ −1

2
` (−6 + `− ¯̀+ 2∆)(−4 + `+ ¯̀+ 2∆), (C.70)

B4(∆, `, ¯̀) ≡ −1

2
(2 + `) (6 + `− ¯̀− 2∆)(8 + `+ ¯̀− 2∆). (C.71)

The 6j-symbols. One of the most striking properties of weight-shifting operators is that

they satisfy a sort of crossing [36] when acting on two- or three-point tensor structures.

Since there is a unique two-point structure defined in (C.61) it is straightforward to compute

all the 6j-symbols associated to it. For the first set of operators (3.11) we have

D1 a
−0+〈O

(`,¯̀)
∆ O

(¯̀,`)
∆ 〉 = +J1(∆, `, ¯̀)×D2 a

+−0〈O
(`,¯̀+1)
∆−1/2O

(¯̀+1,`)
∆−1/2〉, (C.72)

D1 a
−0−〈O

(`,¯̀)
∆ O

(¯̀,`)
∆ 〉 = +J2(∆, `, ¯̀)×D2 a

++0〈O
(`,¯̀−1)
∆−1/2O

(¯̀−1,`)
∆−1/2〉, (C.73)

D1 a
++0〈O

(`,¯̀)
∆ O

(¯̀,`)
∆ 〉 = +J3(∆, `, ¯̀)×D2 a

−0−〈O
(`+1,¯̀)
∆+1/2O

(¯̀,`+1)
∆+1/2〉, (C.74)

D1 a
+−0〈O

(`,¯̀)
∆ O

(¯̀,`)
∆ 〉 = +J4(∆, `, ¯̀)×D2 a

−0+〈O
(`−1,¯̀)
∆+1/2O

(¯̀,`−1)
∆+1/2〉. (C.75)

For the second set of operators (3.12) we have

D−+0
1 a 〈O

(`,¯̀)
∆ O

(¯̀,`)
∆ 〉 = −J1(∆, ¯̀, `)×D+0−

2 a 〈O
(`+1,¯̀)
∆−1/2O

(¯̀,`+1)
∆−1/2〉, (C.76)

D−−0
1 a 〈O

(`,¯̀)
∆ O

(¯̀,`)
∆ 〉 = −J2(∆, ¯̀, `)×D+0+

2 a 〈O
(`−1,¯̀)
∆−1/2O

(¯̀,`−1)
∆−1/2〉, (C.77)

D+0+
1 a 〈O

(`,¯̀)
∆ O

(¯̀,`)
∆ 〉 = −J3(∆, ¯̀, `)×D−−0

2 a 〈O
(`,¯̀+1)
∆+1/2O

(¯̀+1,`)
∆+1/2〉, (C.78)

D+0−
1 a 〈O

(`,¯̀)
∆ O

(¯̀,`)
∆ 〉 = −J4(∆, ¯̀, `)×D−+0

2 a 〈O
(`,¯̀−1)
∆+1/2O

(¯̀−1,`)
∆+1/2〉. (C.79)

The indices 1 and 2 indicate the coordinates the weight-shifting operators act on. The

coefficients read as follows

J1(∆, `, ¯̀) ≡ 2i

(1 + ¯̀)(4− `+ ¯̀− 2∆)(6 + `+ ¯̀− 2∆)
, (C.80)

J2(∆, `, ¯̀) ≡ 2i¯̀

(4 + `− ¯̀− 2∆)(−2 + `+ ¯̀+ 2∆)
, (C.81)

J3(∆, `, ¯̀) ≡ i(2− `+ ¯̀− 2∆)(`+ ¯̀+ ∆)

2(1 + `)
, (C.82)

J4(∆, `, ¯̀) ≡ i`

2
(2 + `− ¯̀− 2∆)(4 + `+ ¯̀− 2∆). (C.83)

C.4 Shadow transform and weight-shifting operators

We define the shadow transform in the 4d index-free through a conformally invariant pairing

with the two-point structure (C.61) as

S[O(`,¯̀)
∆ ](x, s, s̄) ≡

∫
d4y 〈O(¯̀,`)

∆̃
(x, s, s̄)O(`,¯̀)

∆̃
(y, t, t̄)〉

←→
G

(`,¯̀)
t,t̄
O(`,¯̀)

∆ (y, t, t̄)

=

∫
d4yO(`,¯̀)

∆ (y, t, t̄)
←→
G

(`,¯̀)
t,t̄
〈O(`,¯̀)

∆̃
(y, t, t̄)O(¯̀,`)

∆̃
(x, s, s̄)〉. (C.84)
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In the last equality we have used the property (C.12) and the symmetry of the two-point

structure (C.61). Notice that all the alternating signs cancel out.

Using the integration by parts properties (C.53)–(C.60) and the 6j-symbols (C.72)–

(C.79) it is straightforward to find the commutation relations of weight-shifting operators

with the shadow transform. They read

SDa−0+

∣∣
[∆,`,¯̀]

= +C1(∆, `, ¯̀)×Da++0 S
∣∣
[∆,`,¯̀]

, (C.85)

SDa−0−
∣∣
[∆,`,¯̀]

= +C2(∆, `, ¯̀)×Da+−0 S
∣∣
[∆,`,¯̀]

, (C.86)

SDa++0

∣∣
[∆,`,¯̀]

= +C3(∆, `, ¯̀)×Da−0+ S
∣∣
[∆,`,¯̀]

, (C.87)

SDa+−0

∣∣
[∆,`,¯̀]

= +C4(∆, `, ¯̀)×Da−0− S
∣∣
[∆,`,¯̀]

(C.88)

together with

SD−+0
a

∣∣
[∆,`,¯̀]

= −C1(∆, ¯̀, `)×D+0+
a S

∣∣
[∆,`,¯̀]

, (C.89)

SD−−0
a

∣∣
[∆,`,¯̀]

= −C2(∆, ¯̀, `)×D+0−
a S

∣∣
[∆,`,¯̀]

, (C.90)

SD+0+
a

∣∣
[∆,`,¯̀]

= −C3(∆, ¯̀, `)×D−+0
a S

∣∣
[∆,`,¯̀]

, (C.91)

SD+0−
a

∣∣
[∆,`,¯̀]

= −C4(∆, ¯̀, `)×D−−0
a S

∣∣
[∆,`,¯̀]

. (C.92)

The coefficients read as follows

C1(∆, `, ¯̀)≡+
J2(4−∆+1/2, `, ¯̀+1)

1+¯̀ =
−2i

(6−`+¯̀−2∆)(8+`+¯̀−2∆)
, (C.93)

C2(∆, `, ¯̀)≡−¯̀×J1(4−∆+1/2, `, ¯̀−1) =
2i

(6+`− ¯̀−2∆)(−4+`+¯̀+2∆)
, (C.94)

C3(∆, `, ¯̀)≡−J4(4−∆−1/2, `+1, ¯̀)

1+`
=− i

2
(−4+`− ¯̀+2∆)(−2+`+¯̀+2∆), (C.95)

C4(∆, `, ¯̀)≡+`×J3(4−∆−1/2, `−1, ¯̀) =
i

2
(−4−`+¯̀+2∆)(6+`+¯̀−2∆). (C.96)

As a simple application consider the coefficient of the square shadow transform (2.28).

In 4d we denote it by N (`,¯̀)
∆ . One can write the following recursion relation using the

bubble operator (C.64)

S2
(
D−0+ ·D

+0−
)
O(`,¯̀)

∆ =B1(∆, `, ¯̀)N (`,¯̀)
∆ O(`,¯̀)

∆

= C1(∆+1/2, `, ¯̀−1)C3(∆̃−1/2, ¯̀−1, `)Da−0+S2D+0−
a O(`,¯̀)

∆

= C1(∆+1/2, `, ¯̀−1)C3(∆̃−1/2, ¯̀−1, `)N (`,¯̀−1)
∆+1/2 B1(∆, `, ¯̀)O(`,¯̀)

∆ .

As result we get a recursion relation on the coefficient N . Notice that the bubble coefficient

cancels out. Analogously one can derive a similar relation using the bubble operator (C.66).

Both relations read as

N (`,¯̀)
∆ = C1(∆ + 1/2, `, ¯̀− 1) C3(∆̃− 1/2, ¯̀− 1, `)N (`,¯̀−1)

∆+1/2 , (C.97)

N (`,¯̀)
∆ = C3(∆− 1/2, `− 1, ¯̀) C1(∆̃ + 1/2, ¯̀, `− 1)N (`−1,¯̀)

∆−1/2 . (C.98)
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Using the base case (3.16) the solution reads as

N (`,¯̀)
∆ =

(−1)`+
¯̀× π4(

∆− 2 + `−¯̀

2

)(
2−∆ + `−¯̀

2

)(
∆ + `+¯̀

2 − 1
)(

4−∆ + `+¯̀

2 − 1
) . (C.99)

C.5 Two- and three-point pairings

We use (C.84) to define a conformally invariant pairing between n-point tensor structures

with n = 2, 3 as the pairing applied to every point of the structure and its dual one as

in (2.11). It is totally symmetric under the exchange of structures(
〈O(`1,¯̀1)

∆1
. . .O(`n,¯̀n)

∆n
〉(a), 〈O(`1,¯̀1)

∆̃1
. . .O(`n,¯̀n)

∆̃n
〉(b)
)

=(
〈O(`1,¯̀1)

∆̃1
. . .O(`n,¯̀n)

∆̃n
〉(b), 〈O(`1,¯̀1)

∆1
. . .O(`n,¯̀n)

∆n
〉(a)
)
. (C.100)

More precisely according to (C.12) the prefactor we get in the right-hand side of (C.100) is

(−1)
∑n
i=1(`i+¯̀

i) = (−1)even = +1. (C.101)

The relation (C.101) holds since there cannot be a non-zero vacuum expectation value of

a fermionic quantity
∑n

i=1(`i + ¯̀
i) = odd in a Lorentz invariant theory. It becomes obvi-

ous in the index-free formalism where one can simply never construct an invariant tensor

structure in such a case.

Before proceeding with computations of two- and three-point pairings let us rewrite

the formula connecting the Plancherel measure with the square shadow coefficient (2.30)

in terms of the two-point pairing. In the index-free language the relation (2.29) reads as

N (∆, `, ¯̀)
µ(∆, `, ¯̀)

vol SO(1, 1)
=

∫
d4xd4y

vol SO(5, 1)

〈O(`,¯̀)
∆ (x, s3, s̄3)O(¯̀,`)

∆ (y, s2, s̄2)〉
←→
G

(¯̀,`)
s2,s̄2〈O

(¯̀,`)

∆̃
(y, s2, s̄2)O(`,¯̀)

∆̃
(x, s1, s̄1)〉

←→
G

(`,¯̀)
s1,s̄1; s3,s̄3

=
(
〈O(`,¯̀)

∆ O(¯̀,`)
∆ 〉, 〈O(`,¯̀)

∆̃
O(¯̀,`)

∆̃
〉
)
. (C.102)

Here the “gluing” operator
←→
G

(`,¯̀)
s1,s̄1; s3,s̄3 acts on spinor polarizations s1, s̄1 to the left and

s3, s̄3 to the right. Moving it between the two-point structures we gain a (−1)`+
¯̀

factor. To

obtain the final result we also flip the position of operators in the right two-point structure.

It brings another (−1)`+
¯̀

factor. Thus all the alternating signs cancel out.

Computation with a direct approach. Let us provide here two simple examples of

conformally invariant pairings defined in section 2.3 between two- and three-point tensor

structures in 4d. For two- and three-point structures the pairing reduces only to contraction

of indices.

Consider first a pairing of the two-point structure (C.61). We evaluate it directly

using (C.9) and (C.10). In the conformal frame it reads as

〈O(`,¯̀)
∆ (0, s1, s̄1)O(¯̀,`)

∆ (∞, s2, s̄2)〉 = i
¯̀−` (s̄2 σ̄

3 s1

)` (−s̄1 σ̄
3 s2

)¯̀
.
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It is simply equal to +1 for ` = 0. One has then

16 vol SO(1, 1) vol SO(4)
(
〈O(`,¯̀)

∆ O(¯̀,`)
∆ 〉, 〈O(`,¯̀)

∆̃
O(¯̀,`)

∆̃
〉
)

= 〈O(`,¯̀)
∆ (0, s1, s̄1)O(¯̀,`)

∆ (∞, s2, s̄2)〉
←→
G

(`,¯̀)
s1,s̄1

←→
G

(¯̀,`)
s2,s̄2 〈O

(`,¯̀)

∆̃
(0, s1, s̄1)O(¯̀,`)

∆̃
(∞, s2, s̄2)〉

=
(−1)`+

¯̀

`!2 ¯̀!2
(∂s̄2L∂s̄2R)` (∂s̄1L∂s̄1R)

¯̀× (s̄2Ls̄2R)` (s̄1Ls̄2R)
¯̀

= (−1)`+
¯̀× (1 + `)(1 + ¯̀). (C.103)

In the second equality we have inserted the labels L and R to distinguish contributions

from the left and right part of the pairing.

Second, consider the pairing of the scalar-scalar-spin(`, `) structure (3.83). In the

conformal frame it reads as

〈φ∆1(0)φ∆2(e)O(`,`)
∆3

(∞, s, s̄)〉 =
(
s̄σ̄3s

)`
. (C.104)

Again it is simply equal to +1 for ` = 0. We have then

16 vol SO(3)
(
〈φ∆1φ∆2O

(`,`)
∆3
〉, 〈φ

∆̃1
φ

∆̃2
O(`,`)

∆̃3
〉
)

=
(
s̄σ̄3s

)` ←→
G

(`,¯̀)
s,s̄

(
s̄σ̄3s

)`
=

1

`!2
(∂s̄L∂s̄R)`(s̄Ls̄R)` = (1 + `). (C.105)

It is interesting to compare the results (C.103) and (C.105) to their analogues ob-

tained in the vector formalism by restricting our attention to traceless symmetric tensors

`= ¯̀=J . The two-point pairing in the vector formalism can be read off from (2.30) together

with (3.28). For d = 4 it is identical to (C.103). We can now establish a connection between

the 4d and the vector formalisms by requiring to preserve this condition or equivalently to

demand that

〈O(`,`)
∆ (0, s1, s̄1)O(`,`)

∆ (∞, s2, s̄2)〉4d = 〈O∆,`(0, z1)O∆,`(∞, z2)〉vector. (C.106)

We remind that the two-point function in the vector formalism was defined in (3.25). This

leads to the following map

zµ = ±2−1/2 × (s̄σ̄µs), (C.107)

where zµ is a polarization vector, see (3.5). An overall sign remains ambiguous. Using this

and the definition of the three-point structure in the vector formalism (2.16) it is easy to

show that

〈φ∆1(0)φ∆2(e)O(`,`)
∆3

(∞, s, s̄)〉4d = (∓)` 2`/2 × 〈φ∆1(0)φ∆2(e)O∆3,`(∞, z)〉vector. (C.108)

Now from (C.108) we expect that the three-point pairing (C.105) is equal to (2.17) times

an overall 2` factor for d = 4. We then observe that this is indeed the case.
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Computation with weight-shifting operators. With the ability to integrate by parts

introduced in section 3.4 we can also compute three-point pairings using weight-shifting op-

erators. Although this is in principle simply a matter of contracting indices as demonstrated

above, for higher spin structures this procedure becomes tedious whereas weight-shifting

operators provide a simple algebraic way of organizing the computation. Let us illustrate

how it works on several examples.

Pairing of two-point structures. As the simplest possible example we consider the most

general two-point pairing defined in (C.61). It satisfies the following recursion relation(
〈O(`,¯̀)

∆ O(¯̀,`)
∆ 〉, 〈O(`,¯̀)

∆̃
O(¯̀,`)

∆̃
〉
)

=

= i
(

(D1
−0+ ·D

−+0
2 )〈O(`,¯̀−1)

∆+1/2O
(¯̀−1,`)
∆+1/2〉, 〈O

(`,¯̀)

∆̃
O(¯̀,`)

∆̃
〉
)

= +
i
¯̀2

(
〈O(`,¯̀−1)

∆+1/2O
(¯̀−1,`)
∆+1/2〉, (D

−−0
2 ·D1

−0−)〈O(`,¯̀)

∆̃
O(¯̀,`)

∆̃
〉
)

= −
(

1 +
1
¯̀

)
×
(
〈O(`,¯̀−1)

∆+1/2O
(¯̀−1,`)
∆+1/2〉, 〈O

(`,¯̀−1)

∆̃−1/2
O(¯̀−1,`)

∆̃−1/2
〉
)

Analogously one can write a similar recursion relation(
〈O(`,¯̀)

∆ O(¯̀,`)
∆ 〉, 〈O(`,¯̀)

∆̃
O(¯̀,`)

∆̃
〉
)

= −
(

1 +
1

`

)
×
(
〈O(`−1,¯̀)

∆−1/2O
(¯̀,`−1)
∆−1/2〉, 〈O

(`,¯̀)

∆̃+1/2
O(¯̀,`)

∆̃+1/2
〉
)
.

The solution to both recursion relations reads as(
〈O(`,¯̀)

∆ O(¯̀,`)
∆ 〉, 〈O(`,¯̀)

∆̃
O(¯̀,`)

∆̃
〉
)

=
(−1)`+

¯̀× (1 + `)(1 + ¯̀)

16 vol SO(1, 1) vol SO(4)
. (C.109)

The correct proportionality factors in (C.109) are determined by considering ` = 0 case.

The appearance of 16 vol SO(1, 1) vol SO(4) is explained in section 2.3. The result perfectly

matches (C.103).

Pairing of scalar-scalar-spin(`, `). Consider a three-point pairing of the tensor struc-

ture (3.83), it satisfies the following recursion(
〈φ∆1φ∆2O

(`,`)
∆3
〉, 〈φ

∆̃1
φ

∆̃2
O(`,`)

∆̃3
〉
)

= A3 ×
(

(D2
−0− ·D

−+0
3 )(D3

−0+ ·D
+0+
2 )〈φ∆1φ∆2O

(`−1,`−1)
∆3+1 〉, 〈φ

∆̃1
φ

∆̃2
O(`,`)

∆̃3
〉
)

= A3/`
2 ×

(
〈φ∆1φ∆2O

(`−1,`−1)
∆3+1 〉, (D

+0−
2 ·D3

−0−)(D
−−0
3 ·D2

−0+)〈φ
∆̃1
φ

∆̃2
O(`,`)

∆̃3
〉
)

=

(
1 +

1

`

)
×
(
〈φ∆1φ∆2O

(`−1,`−1)
∆3+1 〉, 〈φ

∆̃1
φ

∆̃2
O(`−1,`−1)

∆̃3−1
〉
)
, (C.110)

where the coefficient A reads as

A−1
3 ≡ (∆2 − 1)(∆1 + ∆2 −∆3 + `− 2). (C.111)

The solution to the recursion relation (C.110) is simply given by(
〈φ∆1φ∆2O

(`,`)
∆3
〉, 〈φ

∆̃1
φ

∆̃2
O(`,`)

∆̃3
〉
)

=
1 + `

16 vol SO(3)
. (C.112)
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The correct proportionality factors in (C.112) are determined by considering ` = 0

case. The appearance of 4 vol SO(3) is explained in section 2.3. The result matches

perfectly (C.105).

Pairing of scalar-spin(p, 0)-spin(`, `). Next we consider the structure (3.91). We use the

relation (3.94) and perform manipulations analogous to (C.110) to obtain(
〈φ∆1 f

(p,0)
∆2
O(`,`+p)

∆3
〉, 〈φ

∆̃1
f

(p,0)

∆̃2
O(`,`+p)

∆̃3
〉
)

(C.113)

=
`+ p+ 1

`+ p

(
〈φ∆1 f

(p−1,0)
∆2+1/2O

(`,`+p−1)
∆3+1/2 〉, 〈φ∆̃1

f
(p−1,0)

∆̃2−1/2
O(`,`+p−1)

∆̃3−1/2
〉
)

(C.114)

=
`+ p+ 1

`+ 1

(
〈φ∆1 φ∆2+p/2O

(`,`)
∆3+p/2〉, 〈φ∆̃1

φ
∆̃2−p/2O

(`,`)

∆̃3−p/2
〉
)
. (C.115)

Using the result (C.112) we write down the final solution(
〈φ∆1 f

(p,0)
∆2
O(`,`+p)

∆3
〉, 〈φ

∆̃1
f

(p,0)

∆̃2
O(`,`+p)

∆̃3
〉
)

=
`+ p+ 1

16 vol SO(3)
. (C.116)

Pairing of fermion-fermion-spin(`, `). To conclude we study an example with multiple

tensor structures (3.101). Using the relation (3.105) we can write the following recursion(
〈ψ†∆1

ψ∆2 O
(`,`)
∆3
〉(m), 〈ψ†

∆̃1
ψ

∆̃2
O(`,`)

∆̃3
〉(n)
)

=

2∑
r=1

Mm
12r

(
D(r)〈φ∆1+3/2−rφ∆2+3/2−rO

(`,`)
∆3
〉, 〈ψ†

∆̃1
ψ

∆̃2
O(`,`)

∆̃3
〉(n)
)

=

2∑
r=1

Mm
12r

(
〈φ∆1+3/2−rφ∆2+3/2−rO

(`,`)
∆3
〉, D′′(r)〈ψ†

∆̃1
ψ

∆̃2
O(`,`)

∆̃3
〉(n)
)

=

2∑
r=1

Mm
12rU

rn
(
〈φ∆1+3/2−rφ∆2+3/2−rO

(`,`)
∆3
〉, 〈φ

∆̃1−3/2+r
φ

∆̃2−3/2+r
O(`,`)

∆̃3
〉
)
, (C.117)

where the differential operator D(n) is defined in (3.104) and D′′ is obtained from D using

the integration by parts properties (C.53)–(C.60), it is given by

D′′(r) ≡
(
D−−0

2 · D1
−0−, D2

+−0 · D
+0−
1

)
. (C.118)

The matrix M12 is given by (3.106) and the components of the matrix U are given by

U11 = 1/2U12 = 2,

U21 = 2(∆1 − 3/2)(∆2 − 3/2)
(

(∆1 + ∆2 −∆3 − 1)(∆1 + ∆2 + ∆3 − 5)− `(2 + `)
)
,

U22 = (∆1 − 3/2)(∆2 − 3/2)(∆1 + ∆2 −∆3 − `− 3)(∆1 + ∆2 + ∆3 + `− 3).

Taking into account (C.112) we arrive at the rather simple final result

(
〈ψ†∆1

ψ∆2 O
(`,`)
∆3
〉(m), 〈ψ†

∆̃1
ψ

∆̃2
O(`,`)

∆̃3
〉(n)
)

=

(
2 1

1 1+`
`

)
× 1 + `

16 vol SO(3)
. (C.119)
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D Conventions for 3d representations

In this appendix we describe our conventions for 3d representation theory, which for the

most parts is consistent with [12, 13, 40, 62].

First, consider the Lorentz group SO(2, 1).53 Its double cover is Spin(2, 1) ' Sp(2,R).

We define the Lorentz generators Mµν to have the commutation relations

[Mµν ,Mσρ] = ηνσMµρ − ηµσMνρ + ηνρMσµ − ηµρMσν . (D.1)

These generators are anti-hermitian when acting on the physical Hilbert space, M † = −M .

They act on local operators according to

[Mµν ,Oa(0)] = −(Mµν)abOb(0), (D.2)

where the matrices Mµν define the representations and have the same commutation rela-

tions as M . In particular, for the spinor representation we have

(Mµν)αβ =
1

4
([γµ, γν ])αβ , (D.3)

where we define the gamma-matrices (γµ)αβ as

γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 1

1 0

)
, γ2 =

(
1 0

0 −1

)
. (D.4)

Note that since the gamma-matrices are real so are the generators M. This is natural

since the spinor representation is simply the fundamental of Sp(2,R). For convenience

we will also define an abstract representation with basis elements eα and the action of

Lorentz group

Mµν · eα ≡ −(Mµν)αβe
β . (D.5)

The spin-j representation of Spin(2, 1) can then be realized in the space with basis elements

eα1...α2j = e(α1...α2j), (D.6)

symmetric in all indices. We define the basis of the dual representation as

eα1...α2j (e
β1...β2j ) = δ(β1

α1
· · · δβ2j)

α2j . (D.7)

Note that this implies

e11...2(e11...2) =

(
2j

k

)−1

, (D.8)

where in both index sets 1 occurs k times. The spinor representation and its dual are

equivalent, with the equivalence defined as

eα1...α2j = Ωα1β1 · · ·Ωα2jβ2j
eβ1...β2j , (D.9)

with Ωαβ = Ωαβ = (γ0)αβ .

53We use the mostly plus metric with η00 = −1.
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We will now identify these basis elements with the standard |j,m〉 basis from the theory

of angular momentum. To that end, we first define Euclidean generators by

M0µ
E = −Mµ0

E = iM0µ, (D.10)

and Mµν
E = Mµν for the other components. We then introduce

Jµ =
−i
2
εµνλM

µλ
E , (D.11)

and J± = J0 ± iJ1. The basis vectors |j,m〉 are then defined to satisfy the usual relations

J2|j,m〉 = m|j,m〉, (D.12)

J+|j,m〉 =
√

(j −m)(j +m+ 1)|j,m+ 1〉, (D.13)

J−|j,m〉 =
√

(j +m)(j −m+ 1)|j,m− 1〉. (D.14)

The vectors 〈j,m| of the dual representation satisfy

〈j,m|j,m′〉 ≡ 〈j,m|(|j,m′〉) ≡ δmm′ . (D.15)

We can again establish the isomorphism between the two representations by

〈j,m| = i−2m|j,−m〉. (D.16)

Finally, we can find the correspondence (parentheses denote the binomial coefficients)

e1...2 = i+j+m
(

2j

j +m

)−1/2

|j,m〉,

e1...2 = i−j−m
(

2j

j +m

)−1/2

〈j,m|, (D.17)

where in both index sets 1 occurs j −m times.

For integer j we can also establish the isomorphism of the above representations with

traceless symmetric tensors. We write

eµ1...µj =
(−i)j

2j/2
γµ1
α1α2
· · · γµjα2j−1α2je

α1...α2j . (D.18)

With this convention the pairing between eµ1...µj and eµ1...µj is equivalent to the pairing

between eα1...α2j and eα1...α2j . However, all the representation that we have studied so far

are real and it is somewhat unnatural to use i in defining this isomorphism.54 This is most

problematic when a hermitian O operator is used in place of e — Oµ1...µj and Oα1...α2j

cannot be both hermitian for odd j. We thus declare that the operators in spinor notation

have phase i−j . This leads to the hermiticity conditions

(Oα1...α2j )† = eiπjOα1...α2j , (D.19)

(Oµ1...µj )† = Oµ1...µj . (D.20)

Finally, the Wick rotation to the Euclidean signature is obtained by setting for all

vector indices x0
E = ixE . The spinor indices are not altered, and thus in Euclidean signature

the isomorphism (D.18) is established by Euclidean gamma-matrices with γ0
E = iγ0.

54This is the rare case when the metric signature matters — had we chosen to work in mostly minus signa-

ture, we wouldn’t need these i factors, while in the mostly plus signature i necessarily has to appear some-

where. This is a reflection of the fact that the real Clifford algebras Cl(2, 1) and Cl(1, 2) are not isomorphic.
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D.1 Tensor structures in different formalisms

To keep track of tensor structures we contract the local operators with polarization55

sα1...α2j , which transforms in the same way as eα1...α2j ,

O(x, s) ≡ sα1...α2jOα1...α2j (x). (D.21)

Occasionally we also write

sα1...α2j = sα1 · · · sα2j (D.22)

for a spinor polarization sα.

Then naturally the tensor structure 〈O(s1, x1) · · · O(sn, xn)〉 is an element of j1⊗· · ·⊗
jn. In particular, by using the isomorphism described in this section it can be expanded

in the basis

|j1,m1〉 ⊗ · · · ⊗ |jn,mn〉. (D.23)

For example, in [40] the structures [q1q2q3] are introduced for 3-point functions, and

by unwinding the definitions we find (taking into account m1 +m2 +m3 = 0)

[m1m2m3] = i−j1−j2−j3
[(

2j1
j1 +m1

)(
2j2

j2 +m2

)(
2j3

j3 +m3

)]−1/2

× |j1,m1〉 ⊗ |j2,m2〉 ⊗ |j3,m3〉. (D.24)

D.2 The two-point function

The two-point function of spin-j operators can be written as [12]

〈O(x1, s1)O(x2, s2)〉 =
(sα1 γ

µ
αβs

β
2x12,µ)2j

x2∆+2j
12

. (D.25)

In order to relate this to the normalization in [12] one has to recall that due to our reality

conditions we essentially have Ohere(x, s) = i−jOthere(x, s). For integer spin operators we

can use the isomorphism (D.18), and defining

O(x, z) = zµ1 · · · zµjOµ1...µj (z, x) (D.26)

for a null polarization z, we find

〈O(x1, z1)O(x2, z2)〉 =
(zµ1 Iµν(x12)zν2 )j

x2∆
12

, (D.27)

where

Iµν(x) = ηµν − 2
xµxν
x2

. (D.28)

55In [40] sα1...α2j ≡ sα1 · · · sα2j .
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Let us first evaluate the two point function in the configuration

〈O(ê2, s1)O(0, s2)〉 = (s1,1s2,2 + s1,2s2,1)2j , (D.29)

where êµ2 = (0, 0, 1). By using the isomorphism (D.17) we find

〈O(ê2, s1)O(0, s2)〉 =

j∑
m=−j

i−2j |j,m〉 ⊗ |j,−m〉. (D.30)

Using (D.16) we can dualize the right operator to obtain the expression for the shadow

kernel,

K(ê2) =

j∑
m=−j

(−1)j−m|j,m〉〈j,m|. (D.31)

This is just the reflection operator in the direction of ê2. Any given Euclidean x can be

represented in spherical coordinates as

x = re−iJ2φe−iJ1θê2. (D.32)

Using the invariance condition UK(x)U−1 = K(Ux) we find

K(x) = r−2∆e−iJ2φe−iJ1θK(ê2)eiJ1θeiJ2φ = r−2∆e−iJ2φe−2iJ1θeiJ2φK(ê2) (D.33)

where we used that K(ê2) is a reflection and J is a pseudo vector. We thus find

K(x) = r−2∆
j∑

m,m′=−j
(−1)j−mei(m−m

′)φdjm′,m(−2θ)|j,m′〉〈j,m|, (D.34)

where djm′,m(θ) = 〈j,m′|eiJ1θ|j,m〉 is the small Wigner d-function.56

E Fourier transform of 3d two-point function

In this section we compute the Fourier transform of the 3d two-point function (D.34), which

is defined by the Euclidean integral57

K(p) =

∫
d3xe−ip·xK(x). (E.1)

Because of rotation and scaling symmetry it suffices to evaluate it at p = (0, 0, 1), which

leads to the integral

j∑
m,m′=−j

∫
dφ dcos θ dr r2−2∆e−ir cos θ(−1)j−mei(m−m

′)φdjm′,m(−2θ)|j,m′〉〈j,m| = (E.2)

56Our convention for the d-function is consistent with Mathematica’s WignerD[{j,m’,m},θ].
57Note that in this section we compute the Fourier transform of an operator with dimension ∆, while in

the main text we are mainly interested in the shadow operator with dimension ∆̃ = 3−∆.

– 76 –



J
H
E
P
1
0
(
2
0
1
9
)
2
1
7

The φ-integral is trivial and sets m′ = m,

= 2π

j∑
m=−j

∫
dcos θ dr r2−2∆e−ir cos θ(−1)j−mdjm,m(−2θ)|j,m〉〈j,m|. (E.3)

Let us write

Ij,m(r) =

∫
dcos θe−ir cos θdjm,m(−2θ). (E.4)

We have d
1
2
1
2
, 1
2

(−2θ) = cos θ, and thus by using the CG decomposition we can find

i∂rIj,m(r) =
j +m+ 1

2j + 1
Ij+ 1

2
,m+ 1

2
(r) +

j −m
2j + 1

Ij− 1
2
,m+ 1

2
(r). (E.5)

Together with the base case

I0,0(r) = 2
sin r

r
(E.6)

and identity Ij,m = Ij,−m this recursion relation determines all Ij,m. We then need to

compute

Aj,m(∆) = 2π(−1)j−m
∫
dr r2−2∆Ij,m(r). (E.7)

Substituting the recursion relation for I into this definition and integrating by parts, we find

2i(∆− 1)Aj,m(∆ +
1

2
) =

j +m+ 1

2j + 1
Aj+ 1

2
,m+ 1

2
(∆)− j −m

2j + 1
Aj− 1

2
,m+ 1

2
(∆), (E.8)

with the base case

A0,0(∆) = 4πΓ(2− 2∆) sinπ∆. (E.9)

This recursion relation is solved by

Aj,m(∆) = (−1)j−m
Γ(∆ +m− 1)Γ(∆−m− 1)

Γ(∆ + j − 1)Γ(∆− j − 1)
Aj,j(∆) (E.10)

and

Aj,j(∆) = (−i)2j 4π sinπ(∆ + j)Γ(2− 2∆)(∆− 1)

∆ + j − 1
. (E.11)

In terms of A the Fourier transform for p = (0, 0, 1) is

K(p) =

j∑
m=−j

Aj,m(∆)|j,m〉〈j,m|. (E.12)
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F Numerical 3d 〈TTTT 〉 OPE coefficients

In the tables below we record the OPE matrices Pab for 〈TTTT 〉 MFT four-point function

in 3d. For parity-even operators we have

∆ j = 0 j = 2 j = 4 j = 6 j = 8

0 1

6 1
3240

1
9676800

(
1

12700800 0

0 0

)

8 1
92400

1
1303948800

(
23

8298702720
−1

377213760
−1

377213760
1

8573040

) (
1

1886068800 0

0 0

)

10 1
1842750

1
78460462080

(
31

229572743400
−1

35318883600
−1

35318883600
1

339604650

)(
1

51602265000
−1

10320453000
−1

10320453000
1

172007550

)(
1

72243171000 0

0 0

)

One can check that all the matrices are positive-semidefinite. For parity-odd operators

we find

∆ j = 0 j = 2 j = 4 j = 5 j = 6 j = 7

7 −1
1920

−1
7902720

−1
10534551552

8 −1
7097654108160

9 −1
9100

−1
237758976

−1
1607401635840

−1
469695283200

10 −1
179850593894400

−1
998689595904000

Note that the OPE matrices of parity-odd operators are negative because unitarity requires

the OPE coefficients of parity-odd structures to be pure imaginary.
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