Deuterium pellets are injected into an initially pure hydrogen H-mode plasma in order to control the hydrogen: deuterium (H:D) isotope mixture. The pellets are deposited in the outer 20% of the minor radius, similar to that expected in ITER, creating transiently hollow electron density profiles. A H: D isotope mixture of approximately 45%:55% is obtained in the core with a pellet fuelling throughput of Phi(pel) = 0.045P(aux)/T-e,T-ped similar to previous pellet fuelling experiments in pure deuterium. Evolution of the H: D mix in the core is reproduced using a simple model, although deuterium transport could be higher at the beginning of the pellet train compared with the flat-top phase.