Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex
 
Loading...
Thumbnail Image
research article

Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex

Barros-Zulaica, Natali  
•
Rahmon, John
•
Chindemi, Giuseppe  
Show more
October 15, 2019
Frontiers In Synaptic Neuroscience

Previous studies based on the 'Quantal Model' for synaptic transmission suggest that neurotransmitter release is mediated by a single release site at individual synaptic contacts in the neocortex. However, recent studies seem to contradict this hypothesis and indicate that multi-vesicular release (MVR) could better explain the synaptic response variability observed in vitro. In this study we present a novel method to estimate the number of release sites per synapse, also known as the size of the readily releasable pool (N-RRP), from paired whole-cell recordings of connections between layer 5 thick tufted pyramidal cell (L5_TTPC) in the juvenile rat somatosensory cortex. Our approach extends the work of Loebel et al. (2009) by leveraging a recently published data-driven biophysical model of neocortical tissue. Using this approach, we estimated N-RRP to be between two to three for synaptic connections between L5_TTPCs. To constrain N-RRP values for other connections in the microcircuit, we developed and validated a generalization approach using published data on the coefficient of variation (CV) of the amplitudes of post-synaptic potentials (PSPs) from literature and comparing them against in silico experiments. Our study predicts that transmitter release at synaptic connections in the neocortex could be mediated by MVR and provides a data-driven approach to constrain the MVR model parameters in the microcircuit.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Final_Version.pdf

Type

Publisher's Version

Access type

openaccess

License Condition

CC BY

Size

6.15 MB

Format

Adobe PDF

Checksum (MD5)

4ceb3e0b344201edab9e46a74719dc84

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés