Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Phosphorous-Doped Silicon Carbide as Front-Side Full-Area Passivating Contact for Double-Side Contacted c-Si Solar Cells
 
research article

Phosphorous-Doped Silicon Carbide as Front-Side Full-Area Passivating Contact for Double-Side Contacted c-Si Solar Cells

Ingenito, Andrea  
•
Nogay, Gizem
•
Stuckelberger, Josua
Show more
December 25, 2018
IEEE Journal of Photovoltaics

We present an electron selective passivating contact based on a tunneling SiOx capped with a phosphorous doped siliconcarbideandpreparedwithahigh-temperaturethermalanneal. We investigate in detail the effects of the preparation conditions of theSiCx(n)(i.e.,gasflowprecursorandannealingtemperature)on the interface recombination rate, dopant in-diffusion, and optical properties using test structures and solar cells. On test structures, our investigation reveals that the samples annealed at temperatures of 800–850 °C exhibit an increased surface passivation toward higher gas flow ratio (r = CH4/(SiH4 + CH4)). On textured and planar samples, we obtained best implied open-circuit voltages (i-VOC) of 737 and 746 mV, respectively, with corresponding dark saturation current densities (J0) of∼8 and∼4 fA/cm2. The SiCx(n)layerswithdifferentrvalueswereappliedonthetextured front side of p-type c-Si solar cells in combination with a borondoped SiCx(p) as rear hole selective passivating contact. Our cell results show a tradeoff between VOC and short-circuit current density (JSC) dictated by the C-content in the front-side SiCx(n). On p-type wafers, best VOC = 706 mV, FF = 80.2%, and JSC = 38.0 mA/cm2 with a final conversion efficiency of 21.5% are demonstrated for 2 × 2 cm 2 screen-printed cells, with a simple and patterning-free process based on plasma depositions and one annealing step 800 °C < T < 850 °C for the formation of both passivating contacts.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

AIngenito P-doped SiC.pdf

Access type

openaccess

Size

1.18 MB

Format

Adobe PDF

Checksum (MD5)

e5414431854d629cf97d33149c223f70

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés