Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Three-Dimensional Model and Evaluation of an Insulin Injection Pen for Precise Dose Capacitive Measurement
 
research article

Three-Dimensional Model and Evaluation of an Insulin Injection Pen for Precise Dose Capacitive Measurement

Paun, Maria-Alexandra  
•
Schnegg, Alexandre
•
Joly, Sylvain
Show more
January 1, 2019
Ieee Access

A fully parameterized three-dimensional model with specific dimensions has been developed in ANSYS for an insulin injection pen used by diabetic persons. The insulin injection pen has a smart pen cap which hosts four electrodes used for the smart pen cap electrode capacitive measurement. The addition of the smart cap on top of the insulin injection pens is novel and essential for storing and transmitting injection dose and time data to help patients successfully manage their treatment. The simulations can be used to decide the number and exact shape of the electrodes, as well as to evaluate different misalignment and asymmetries of the electrode fabrication process or of the liquid misplacement. Using Maxwell 3D tool the electrode capacitance was numerically evaluated, which is necessary for sensing and ultimately for insulin dose precise detection. Experimental results have been provided using an AD7746 high-resolution sigma-delta capacitance-to-digital converter (CDC). Simulation and experimental results for the sense electrode capacitance, in the case of both smart pen cap and complete insulin injection pen + smart pen cap system, have been obtained, using two different configurations (1 vs 3 and 2 vs 2 respectively). Smart pen cap electrode capacitance variation for different insulin fill states has been numerically evaluated and the linear behavior of the injection has been proven.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

08805361.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

6.56 MB

Format

Adobe PDF

Checksum (MD5)

9df21a66c5ee211ba8b2b04253432a6f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés