Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Model-assisted identification of solid oxide cell elementary processes by electrochemical impedance spectroscopy measurements
 
research article

Model-assisted identification of solid oxide cell elementary processes by electrochemical impedance spectroscopy measurements

Caliandro, P.  
•
Nakajo, A.  
•
Diethelm, S.  
Show more
October 1, 2019
Journal of Power Sources

Electrochemical Impedance Spectroscopy (EIS) is extensively used to characterize Solid Oxide Cells (SOCs) to extract information on the elementary loss mechanisms. However, these individual mechanisms usually overlap in the frequency domain, requiring dedicated data processing for unambiguous identification. A powerful method for discriminating process contributions is the analysis by the Distribution of Relaxation Times (DRT). The de-convoluted spectrum of SOC generally presents, six peaks from mHz to hundreds of kHz. DRT peak-to-process attribution is often obtained by experimental sensitivity analysis. In the study, six parameters have been systematically varied: temperature, current density, partial pressure of O-2 at the oxygen electrode, partial pressure of steam at the fuel electrode, total flow rates and fuel composition. The effect of wires inductance and different cell geometries has also been analyzed. The study provides detailed information about the contribution of the elementary processes to the total losses over a wide range of operation regimes. It further refines peak-to process attributions by using a dynamic numerical model that includes gas and solid phase transport coupled with charge transfer and chemical reactions. Moreover, the non-univocal literature attribution of processes in the middle frequency range is clarified: strongly overlapping peaks cannot be separated even by DRT.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S0378775319308316-main.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.78 MB

Format

Adobe PDF

Checksum (MD5)

d03d2f1e7963bdf21da995d7dd00e1db

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés