Files

Abstract

Herein, we report a cysteine bioconjugation methodology for the introduction of hypervalent iodine compounds onto biomolecules. Ethynylbenziodoxolones (EBXs) engage thiols in small organic molecules and cysteine-containing peptides and proteins in a fast and selective addition onto the alkynyl triple bond, resulting in stable vinylbenziodoxolone hypervalent iodine conjugates. The conjugation occurs at room temperature in an open flask under physiological conditions. The use of an azide-bearing EBX reagent enables a "doubly orthogonal" functionalization of the bioconjugate via strain-release-driven cycloaddition and Suzuki-Miyaura cross-coupling of the vinyl hypervalent iodine bond. We successfully applied the methodology on relevant and complex biomolecules, such as histone proteins. Through single-molecule experiments, we illustrated the potential of this doubly reactive bioconjugate by introducing a triplet-state quencher close to a fluorophore, which extended its lifetime by suppressing photobleaching. This work is therefore expected to find broad applications for peptide and protein functionalization.

Details

Actions

Preview