The Complexity of Splitting Necklaces and Bisecting Ham Sandwiches

We resolve the computational complexity of two problems known as NECKLACE-SPLITTING and DISCRETE HAM SANDWICH, showing that they are PPA-complete. For NECKLACE SPLITTING, this result is specific to the important special case in which two thieves share the necklace. We do this via a PPA-completeness result for an approximate version of the CONSENSUS-HALVING problem, strengthening our recent result that the problem is PPA-complete for inverse-exponential precision. At the heart of our construction is a smooth embedding of the high-dimensional Möbius strip in the CONSENSUS-HALVING problem. These results settle the status of PPA as a class that captures the complexity of "natural" problems whose definitions do not incorporate a circuit.


Published in:
The 51st Annual ACM Symposium on the Theory of Computing (STOC 2019)
Year:
2019
Publisher:
ACM
Other identifiers:
Laboratories:




 Record created 2019-08-14, last modified 2019-08-16


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)