Dimensional crossover in the SU(4) Heisenberg model in the six-dimensional antisymmetric self-conjugate representation revealed by quantum Monte Carlo and linear flavor-wave theory

Using linear flavor-wave theory (LFWT) and auxiliary field quantum Monte Carlo (QMC), we investigate the properties of the SU(4) Heisenberg model on the anisotropic square lattice in the fully antisymmetric six-dimensional irreducible representation, a model that describes interacting fermions with four flavors at half-filling. Thanks to the calculations on very large systems, we have been able to convincingly demonstrate that QMC results are consistent with a small but finite antiferromagnetic moment at the isotropic point, in qualitative agreement with LFWT obtained earlier [F. H. Kim et al., Phys. Rev. B 96, 205142 (2017)], and in quantitative agreement with results obtained previously on the Hubbard model [D. Wang et al., Phys. Rev. Lett. 112, 156403 (2014)] after extrapolation to infinite U/t. The presence of a long-range antiferromagnetic order has been further confirmed by showing that a phase transition takes place into a valence-bond solid (VBS) phase not too far from the isotropic point when reducing the coupling constant along one direction on the way to decoupled chains.


Published in:
Physical Review B, 100, 8, 085103
Year:
Aug 01 2019
Publisher:
College Pk, AMER PHYSICAL SOC
ISSN:
2469-9950
2469-9969
Keywords:
Laboratories:




 Record created 2019-08-13, last modified 2020-10-24


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)