Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Unraveling radial dependency effects in fiber thermal drawing
 
research article

Unraveling radial dependency effects in fiber thermal drawing

Page, Alexis G.
•
Bechert, Mathias  
•
Gallaire, Francois  
Show more
July 22, 2019
Applied Physics Letters

Fiber-based devices with advanced functionalities are emerging as promising solutions for various applications in flexible electronics and bioengineering. Multimaterial thermal drawing, in particular, has attracted strong interest for its ability to generate fibers with complex architectures. Thus far, however, the understanding of its fluid dynamics has only been applied to single material preforms for which higher order effects, such as the radial dependency of the axial velocity, could be neglected. With complex multimaterial preforms, such effects must be taken into account, as they can affect the architecture and the functional properties of the resulting fiber device. Here, we propose a versatile model of the thermal drawing of fibers, which takes into account a radially varying axial velocity. Unlike the commonly used cross section averaged approach, our model is capable of predicting radial variations of functional properties caused by the deformation during drawing. This is demonstrated for two effects observed, namely, by unraveling the deformation of initially straight, transversal lines in the preform and the dependence on the draw ratio and radial position of the in-fiber electrical conductivity of polymer nanocomposites, an important class of materials for emerging fiber devices. This work sets a thus far missing theoretical and practical understanding of multimaterial fiber processing to better engineer advanced fibers and textiles for sensing, health care, robotics, or bioengineering applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1.5109469.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.31 MB

Format

Adobe PDF

Checksum (MD5)

3a93ea8037e68dd0408a9251450a72f5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés