Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Testing gravity with galaxy-galaxy lensing and redshift-space distortions using CFHT-Stripe 82, CFHTLenS, and BOSS CMASS datasets
 
research article

Testing gravity with galaxy-galaxy lensing and redshift-space distortions using CFHT-Stripe 82, CFHTLenS, and BOSS CMASS datasets

Jullo, E.
•
de la Torre, S.
•
Cousinou, M-C
Show more
July 12, 2019
Astronomy & Astrophysics

The combination of galaxy-galaxy lensing (GGL) and redshift space distortion of galaxy clustering (RSD) is a privileged technique to test general relativity predictions and break degeneracies between the growth rate of structure parameter f and the amplitude of the linear power spectrum sigma(8). We performed a joint GGL and RSD analysis on 250 sq. deg using shape catalogues from CFHTLenS and CFHT-Stripe 82 and spectroscopic redshifts from the BOSS CMASS sample. We adjusted a model that includes non-linear biasing, RSD, and Alcock-Paczynski effects. We used an N-body simulation supplemented by an abundance matching prescription for CMASS galaxies to build a set of overlapping lensing and clustering mocks. Together with additional spectroscopic data, this helps us to quantify and correct several systematic errors, such as photometric redshifts. We find f (z = 0.57) = 0.95 +/- 0.23, sigma(8)(z = 0.57) = 0.55 +/- 0.07 and Omega(m) = 0.31 +/- 0.08, in agreement with Planck cosmological results 2018. We also estimate the probe of gravity E-G = 0.43 +/- 0.10, in agreement with Lambda CDM-GR predictions of E-G = 0.40. This analysis reveals that RSD efficiently decreases the GGL uncertainty on Omega(m) by a factor of 4 and by 30% on sigma(8). We make our mock catalogues available on the Skies and Universe database.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

aa34629-18.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

3.75 MB

Format

Adobe PDF

Checksum (MD5)

85b6165e6b23c38b14ea7050ddc11e3d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés