Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Deformation of the moving magnetic skyrmion lattice in MnSi under electric current flow
 
research article

Deformation of the moving magnetic skyrmion lattice in MnSi under electric current flow

Okuyama, D.
•
Bleuel, M.
•
White, J. S.
Show more
July 11, 2019
Communications Physics

Topological defects are found ubiquitously in various kinds of matter, such as vortices in type-II superconductors, and magnetic skyrmions in chiral ferromagnets. While knowledge on the static behavior of magnetic skyrmions is accumulating steadily, their dynamics under forced flow is still a widely open issue. Here, we report the deformation of the moving magnetic skyrmion lattice in MnSi under electric current flow observed using small-angle neutron scattering. A spatially inhomogeneous rotation of the skyrmion lattice, with an inverse rotation sense for opposite sample edges, is observed for current densities greater than a threshold value j(t) similar to 1 MA m(-2) (10(6) A m(-2)). Our result show that skyrmion lattices under current flow experience significant friction near the sample edges due to pinning, this being a critical effect that must be considered for anticipated skyrmion-based applications at the nanoscale.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s42005-019-0175-z.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.24 MB

Format

Adobe PDF

Checksum (MD5)

f3b733e91909fca0051a33c91bde21de

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés