Silicon Photonic MEMS Phase-Shifter

We present a design for an analog phase shifter based on Silicon Photonic MEMS technology. The operation principle is based on a two-step parallel plate electrostatic actuation mechanism to bring a vertically movable suspended tapered waveguide in a first step into proximity of the bus waveguide and to tune the phase of the propagating coupled mode in a second step by actuation of the suspended waveguide to tune the vertical gap. In the coupled state, the effective index of the optical supermode and the total accumulated phase delay can be varied by changing the vertical separation between the adiabatically tapered suspended and the fixed bus waveguides. Simulations predict that pi phase shift can be achieved with an actuation voltage of 19 V, corresponding to a displacement of 19 nm. With an adiabatic coupler geometry, the optical signal can be coupled between the moving waveguide and the bus waveguide with low loss in a wide wavelength range from 1.5 mu m to 1.6 mu m keeping the average insertion loss below 0.3 dB. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement


Published in:
Optics Express, 27, 13, 18959-18969
Year:
Jun 24 2019
Publisher:
Washington, OPTICAL SOC AMER
ISSN:
1094-4087




 Record created 2019-07-09, last modified 2019-07-09


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)