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1 Introduction

The conformal bootstrap program [5–9]1 has developed immensely in recent years since its

revival [13]. Many theoretical results maximally exploiting conformal symmetry unveiled

rigid kinematic (model independent) structure of correlators in conformal field theories

(CFTs) [3, 4, 14–33] in d ≥ 3 dimensions. Impressive numerical methods [34–62] further

allowed to put constraints on dynamical (model dependent) quantities.

In parallel to numerical developments, an analytic conformal bootstrap method has

been proposed [1, 2]. It allows to gain access to large-spin sector of the CFT spectrum.

More precisely it was shown that for every pair of scalars φ1 and φ2 in the CFT spectrum

with twists2 τ1 and τ2, there exist an infinite tower of traceless symmetric operators O
spanned by a non-negative integer n, whose twist has the form

τ = (τ1 + τ2 + 2n) +O (1/`) . (1.1)

These operators are often called the double-twist operators. Their OPE coefficients at the

leading order reproduce the ones of generalized free theories (GFTs).3 The result (1.1) was

1See [10–12] for modern introduction.
2See (2.1) for precise definition of twist in 4D.
3Generalized free theory, also known as mean field theory, is a very special type of CFT. It can be defined

by a set of primaries called fundamental operators. All the other primaries, called composite (multi-twist)
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obtained by studying the s-t bootstrap equations for the scalar 4-point function

〈φ1φ1φ2φ2〉. (1.2)

The analytic techniques of [1, 2] were further developed in [63–73]. The most recent progress

has been made in [74, 75]. Other closely related works are [76–78] and [79–81].

The obtained CFT result can be interpreted in AdS as a system of scalar particles

with large relative angular momentum `. One can compute shifts of their binding energies

due to gravity [82–85] and other interraction [86]. This matches nicely the sub-leading

correction in (1.1) governed by the energy-momentum tensor on the CFT side.

Extending the analytic techniques to correlators with spin is crucial for studying generic

CFT data. The works [87, 88] addressed correlators with two scalars and two traceless

symmetric operators4 such as conserved currents Jµ and the energy-momentum tensor

Tµν . This has allowed to prove [88] the conjectured conformal collider bounds [89]. The

work [87] deals solely with 3D CFTs, whereas in [88] the authors work in d ≥ 3 dimensions.

Analytic studies of fermions also got some attention recently [90, 91].

Goal of the paper. In this work we will discuss the analytic method of [1, 2] in the

context of generic spinning correlators in 4D [3, 4, 31, 32].5 We will follow the notation

of [32]. For performing computations in practice we will develop and attach to the paper

a little Mathematica [93] code “analyticBootstrap4D.m”, which should be used together

with the “CFTs4D” package [32]. We mention the names of relevant functions throughout

the text as [functionName].

As a demonstration in this paper we will study in detail the simplest spinning correlator

in 4D, namely the scalar-fermion correlator6

〈φψ φψ〉. (1.3)

We will address both s-t and u-t channels and discuss how they complement each other.7

To facilitate the discussion we will also study the spectrum and the OPE coefficients of

the scaclar-fermion GFT. We will discuss how the GFT results are related to the large-

spin analytic results. We will provide details of all the computations in the attached

Mathematica notebook “Example.nb”.

Outline of the paper. In section 2 we discuss in details generic spinning 4-point func-

tions. We provide a recipe for studying them analytically and develop practical tools for

performing computations in Mathematica. In section 3 we consider a demonstration of the

strategy given in section 2 on the scalar-fermion 4-point function. A compact summary of

operators, are constructed out of the fundamental ones and their derivatives. We refer to the composits

made out two primaries as double-twist operators. Correlation functions in GFTs are computed using Wick

contractions, which is equivalent to factorizing a given n-point function into 2-point functions in all possible

ways. Contrary to free theories, GFT operators do not satisfy equations of motion.
4In [87] the correlator 〈Jµ Jν Jρ Jσ〉 was also studied.
5Other approaches to spinning correlators applicable to 4D were used in [25, 28, 92].
6This correlator is not unitary (or reflection-positive in the Euclidean signature).
7In a similar way one could study the u-t bootstrap equation of (1.2), see [71].
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the final result is given in section 3.2.3. In section 3.3 we address a scalar-fermion GFT and

show how it is related to our analytic bootstrap results. We conclude in section 4. Details

on the Ward identities for the scalar-fermion correlator are provided in appendix A.

2 Analytic bootstrap

We start by discussing the main ingredients of general bootstrap equations in section 2.1

preparing the ground for section 2.2, where we provide an analytic bootstrap recipe in a

schematic form.

2.1 Bootstrap equations

We work in 4D Minkowski space where the conformal group is SO(2, 4) ' SU(2, 2). The lo-

cal primary operators transform in a finite-dimensional representation of the U(1)×SU(2)×
SU(2) sub-group and thus are labeled by the U(1) charge (the scaling dimension) ∆ and

the pair of integers (`, ¯̀) which describes spin.8 In what follows it will be more convenient

to use instead of the scaling dimension another quantity called the twist defined as

τ ≡ ∆− `+ `

2
, in unitary CFTs

{
τ ≥ 1, `¯̀= 0,

τ ≥ 2, `¯̀ 6= 0.
(2.1)

The inequalities in (2.1) are the unitary bounds, they are saturated by conserved oper-

ators [94, 95]. In the `¯̀ = 0 case the conserved operators are free [96]. A generic local

operator is denoted by

O(`,¯̀)
k,τ (pi), pi ≡ (xi, si, s̄i), (2.2)

where x is the position and s and s̄ are auxiliary spinors (polarizations). The additional

index k is used to label degenerate operators, which arise for example in the case of global

symmetries or Dirac fermions. In the reminder of this paper we drop this label for simplic-

ity. We use a convention for naming operators (2.2) such that

` ≥ ¯̀. (2.3)

Every operator (2.2) has its hermitian conjugate

O(¯̀,`)
τ (pi) ≡

(
O(`,¯̀)
τ (pi)

)†
. (2.4)

A generic 4-point function of local operators has the following form when expanded in

the s-channel

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 =
∑
O

∑
a,b

λa〈O1O2O〉λ
b
〈OO3O4〉

W ab
〈O1O2O〉〈OO3O4〉

, (2.5)

where λa are the OPE coefficients (3-point coupling constants) and W ab are the conformal

partial waves (CPWs) which can be written as

W ab =
∑
I

Hab
I (z, z) TI , (2.6)

8Traceless symmetric operators in 4D are those with ` = ¯̀.
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where H are conformal blocks and TI are the tensor structures of the correlator (2.5). We

will refer to the operators Oi in correlators as external operators and to the operator O as

internal (exchanged). The sum over all possible operators should be seen as a sum over all

possible values of twist and spin ∑
O

=
∑
τ

∑
`, ¯̀

. (2.7)

Any conformal block Hab
I (z, z) can be expressed [3] in terms of the derivatives of simpler

blocks called the seed blocks and dual seed blocks. Both seed and dual seed blocks have

the following form [4]

H
(p)
seed(z, z̄) =

( zz̄

z − z̄

)2 p+1 ∑
m,n

cm,nF (a,b;c)
ρ1 ρ2

(z, z̄), p ≡ |`− ¯̀|. (2.8)

The coefficients cm,n are some constants [4, 32] which have the following schematic form

cem,n = (−1)` ip × rationalFunctionm,n(a, b; `, τ). (2.9)

An example of how the rationalFunction looks like can be found in appendix B in [4] for

the p = 1 case. The functions F are defined as

F (a,b;c)
ρ1ρ2

(z, z) ≡ k(a,b;c)
ρ1

(z)k(a,b;c)
ρ2

(z̄)− (z ↔ z̄). (2.10)

Here the parameters a and b depend on the twists of external operators, parameter c on

the spin difference p defined in (2.8). The parameters ρ1 and ρ2 depend on twist and spin

of the internal (exchanged) operator as

ρ1 ≡
τ

2
+ l + r, ρ2 ≡

τ

2
+ s, (2.11)

where r and s are some integer or half- integer constants. See [4] for details. The k-functions

are defined as

k(a,b;c)
ρ (x) ≡ xρ2F1(a+ ρ, b+ ρ; c+ 2ρ; x). (2.12)

For b = c− a the k-functions admit the following representation as a double-infinite sum

k(a, c−a; c)
ρ (1− x) =

Γ(2ρ+ c)

Γ(ρ+ a)Γ(ρ− a+ c)

∞∑
m=0

∞∑
n=0

(−ρ)m
m!

(ρ+ a)n
n!

(ρ+ c− a)n
n!

xm+n

×
(

2ψ(n+ 1)− ψ(ρ+ a+ n)− ψ(ρ+ c− a+ n)− ln(x)
)
, x ∈ [0, 1], (2.13)

which simply follows from Taylor expansion around x = 0. The Pochhammer symbol and

the digamma functions are denoted by

(a)n ≡
Γ (a+ n)

Γ (a)
, ψ(b) ≡ Γ′(b)

Γ (b)
(2.14)

respectively. Another important representation of (2.12) can be obtained in the large `� 1

limit and small x� 1, which reads as

lim
`→∞

lim
x→0

k(a,b;c)
ρ1

(1− x) =

√
`

π
22ρ1+cx−

a+b−c
2 Ka+b−c(2`

√
x), `2x ∼ 1, (2.15)
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where Kα is the modified Bessel function and the parameter ρ1 is defined in (2.11).9 This

relation is a straightforward generalization of the results of appendix A.1.4 in [1].

For a given correlator one can write essentially 2 bootstrap equations: the s-t equation

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 = 〈O1(p1)O2(p2)O3(p3)O4(p4)〉 (2.16)

and the u-t equation

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 = 〈O1(p1)O2(p2)O3(p3)O4(p4)〉. (2.17)

s-t bootstrap equation. We consider now the bootstrap equation (2.16). After decom-

posing it into a set of independent equations by stripping of independent tensor structures

TI , all the equations get the following schematic form

(zz)A
∑
O
PO H

I
O(z, z) =

(
(1− z)(1− z)

)A∑
O
P ′O H

′ I
O (1− z, 1− z). (2.18)

It can be studied in the z, z ∈ [0, 1] region. Here PO and P ′O represent products of the

OPE coefficients

PO ≡ λa〈O1O2O〉λ
b
〈OO3O4〉

, P ′O ≡ λa〈O3O2O〉λ
b
〈OO1O4〉

(2.19)

and HI
O, H ′ IO represent the conformal blocks which can be constructred from the (dual)

seed blocks (2.8) and their derivatives. The multipliers (zz)A and
(

(1− z)(1− z)
)A

come

from the ratio of kinematic factors in the s- and t-channel with the exponent A which

depends on twist of external operators.

u-t bootstrap equation. Equation (2.17) leads to the following set of bootstrap equa-

tions(
1

z z

)A∑
O
P ′′O H

′′ I
O

(
1

z
,

1

z

)
=
(

(1− z)(1− z)
)A∑

O
P ′O H

′ I
O (1− z, 1− z). (2.20)

We will study this equation in the z, z ∈ [1,+∞] region. We make a change of variables

from (z, z̄) to (ω, ω) defined as

ω ≡ 1

z
, ω ≡ 1

z
, ω, ω ∈ [0, 1]. (2.21)

Even though the hypergeometric series defining the k(ω) functions (2.12) is convergent in

the ω ∈ [0, 1] region, the k(ω) functions is analytic in the whole complex plane modulo

branch cuts [97], see figure 1. The following formula holds [98]

k(a,b;c)
ρ

(
1− 1

ω

)
= (−1)±ρ (ω)a k(a,c−b;c)

ρ (1− ω). (2.22)

The factor (−1)±ρ appears due to the choice of analytic continuation ±iπε, namely one can

choose to be right above or right below the left brunch cut, as indicated in figure 1 by arrows.

9Notice that (2.15) contains a factor 4` entering trough the parameter ρ1.
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Figure 1. Complex plain w. There are two branch cuts for the k function: one is due to the

hypergeometric series and another one due to the power-law behavior. By circular arrows we show

2 different ways to perform an analytic continuation from the ω ∈ [0, 1] to the [−∞, 0] line.

We perform an analytic continuation of the functions k(ω) and k(ω) separately choosing

opposite directions. It is required when moving to Euclidean space where ω = ω∗. As a

consequence we get

F (a,b;c)
ρ1,ρ2

(
1− 1

ω
, 1− 1

ω

)
= (−1)ρ1−ρ2 (ωω)a F (a,c−b;c)

ρ1,ρ2
(1− ω, 1− ω), (2.23)

where according to (2.11) ρ1 − ρ2 is an integer and one has

(−1)ρ1−ρ2 = ±(−1)`. (2.24)

After these manipulations instead of equation (2.20) we can write

(ωω)2A−a∑
O
P ′′O H

′′ I
O (ω, ω) =

(
(1−ω)(1−ω)

)A∑
O
P ′O (−1)` H ′′′ IO (1−ω, 1−ω). (2.25)

Structurally it has exactly the same form as (2.18) but with an extra (−1)`.

There is an equivalent and somewhat simpler way of dealing with the u-t bootstrap

equations. One can consider a different correlation function (with positions of operators

re-ordered) and to study an s-t channel

〈O1(p1)O3(p2)O2(p3)O4(p4)〉 = 〈O1(p1)O3(p2)O2(p3)O4(p4)〉. (2.26)

In this case the standard s-t techniques straightforwardly apply and no analytic continua-

tion is needed.

2.2 The analytic bootstrap recipe

In Minkowski space the variables z and z are independent quantities. The light-cone limit

is defined as10

z � 1− z � 1. (2.27)

10In the ω-variable we will use the light-cone limit ω � 1− ω � 1.
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We summarize here the recipe of [1] for studying analytically the bootstrap equations of

the form (2.18) in the light-cone limit (2.27).

We keep the discussion at the schematic level and pretend that the conformal blocks

H are simply represented by a single F function (2.10) together with the (−1)` ip factor

coming from (2.9)11

H(z, z̄) = (−1)` ip ×F (a,b;c)
ρ1 ρ2

(z, z̄). (2.28)

The left-hand side of (2.18) in the light-cone limit reads as12 [KeepLeadingTerm]

(zz)A

1 + ip
∑
`min

(−1)`min

2∑
τmin>1

zρ1 k(a,b;c)
ρ2

(z̄)

 , A < 0. (2.29)

The first term comes from the identity operator that may or may not be present. This

depends on the correlator under consideration. The second term describes the contribution

of all the rest of operators in the theory. In the z → 0 limit only the lowest (minimal) twist

operators contribute (light scalars or fermions with 1 < τ ≤ 2 and conserved bosonic or

fermionic operators with τ = 2). We then recast the expression (2.29) into the final form

by performing a series expansion around small 1 − z [kFunctionExpand].13

The right-hand side of (2.18) will be dominated (in the light-cone limit) by the large

spin operators as was argued in [1, 2].14 Using the definition (2.11) it is clear that the

second term in (2.10) is negligible since it behaves as (1− z)` and should be dropped using

[plugSeedBlocks[0], plugDualSeedBlocks[0]]. We approximate the sum over ` by an

integral ∑
`

=

∫ ∞
0

d` Rτ (`), PO = Pτ (`), (2.30)

where the distribution densityRτ (`) indicates how operators with a given twist τ contribute

to the sum. The right-hand side of (2.18) is then written as15 [largeSpinExpand]

22t+c z−
a+b−c

2 ×
∑
τ

(1− z)A 2τ k(a,b;c)
ρ2

(1− z)

×
∫ ∞

0
d` ρτ (`) Pτ (`) (−1)` ip 4`

√
`

π
Ka+b−c(2`

√
z). (2.31)

In the large ` limit all the coefficients (2.9) simplify significantly but remain non-zero

for generic parameters. They do not give any ` contribution apart from the (−1)` factor.

This is the reason we can safely leave them out of the discussion in (2.28).

11We thus ignore the necessity of taking a linear combination in F with different coefficients cm,n and

taking derivatives in z and z in general situation. We also drop the factor
(
zz̄
z−z̄

)2 p+1

which in the

limit (2.27) simply leads to (−z)2 p+1.
12In writing (2.29) we assume ρ1 < ρ2. Depending on parameters r and s defined in (2.11) there might

be a situation when ρ1 > ρ2. The second term in (2.29) should change accordingly.
13The action of [kFunctionExpand] on k(z) is equivalent to (2.13) for x = 1− z and b = c− a.
14The poles in (2.29) for z → 0 can only be reproduced by an infinite sum over large spin.
15Notice that the equation (2.31) would have not contained the factor (−1)` if we had started from the

bootstrap equation (2.25).
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In the large spin limit we expect the following behavior of the squared OPE coefficients

multiplied by the density

Rτ (`) Pτ (`) = 4−` `B
(
P 0 +

P 1

`C
+ . . .

)
, (2.32)

where the coefficients P 0 and P 1 contain the dependence on ` only via the factor (−1)`

which may or may not be present. In what follows we assume Rτ (`) = 1.16 Presence of

the 4−` factor in (2.32) guaranties sufficiently fast decay of the OPE coefficients required

by the OPE convergence [99, 100] and should cancel out the 4` factor in (2.31). The same

type of ansatz was also used in [87, 88].

Using (2.32) one can then evaluate the integral in (2.31) analytically term by term

[largeSpinSum] by means of∫ ∞
0

d` `α Kβ(2`
√
z) =

1

4
z−

α+1
2 Γ

(
1 + α+ β

2

)
Γ

(
1 + α− β

2

)
. (2.33)

It is clear that, if the factor (−1)` is present in the final expression, the integral would

return zero, since contributions from even and odd spins are approximately the same and

cancel each other out.

The twist has the following behavior

τ = τ0 +
γ

`D
+ . . . , (2.34)

where τ0 is the leading twits and γ is the coefficient of the sub-leading correction often

called the anomalous dimension. Plugging (2.34) to (2.31) one should make an expansion

around τ0 for small γ
`D

of the expression

2τ k(a,b;c)
ρ2

(1− z) ≈ 2τ
0
k

(a,b;c)
τ0

2
+s

(1− z) +
∂

∂τ

(
2τ k

(a,b;c)
τ
2

+s (1− z)
) ∣∣∣∣

τ=τ0

× γ

`D
. (2.35)

We then recast the expression (2.31) into the final form by performing a series expansion

around small 1− z [kFunctionExpand]. For example at the leading order in 1− z one has

2τO k(a,b;c)
ρ2

(1− z) ≈ 2τ
0
(1− z)s+

τ0

2 ×
(

1 +
γ

2 lD
log
(
4(1− z)

))
. (2.36)

Matching the left- and right-hand side. After performing all prescribed manipula-

tions one can equating (2.29) and (2.31) and determine the unknown coefficients in (2.32)

and (2.34) by matching independently terms with equal powers

z#1 × (1− z)#2 × log#3(1− z), (2.37)

where #3 can only be 0 or 1. More precisely we start analyzing terms with #3 = 0.

Matching the power #1 allows to determine the exponent B and matching the power #2

allows to determine the leading twist τ0. We have a series expansion in 1−z, to satisfy the

equations order by order in 1 − z it is required to have an infinite tower of operators with

16This hypothesis seems to be confirmed for the 3D Ising model in [72].
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the twists τ0 which differ by 2n, where n is a non-negative integer. We can then determine

the coefficient P 0. By studying the terms with #3 = 1 one gets access to the anomalous

dimension. After extracting the coefficient γ and the exponent D, one can also compute P 1.

In the case of bootstrap equations with no identity operator we do not get access to

all the parameters, we will see an instance of this in section 3.2.2.

3 Scalar-fermion correlator

As the simplest example of spinning correlator we consider the following 4-point function

〈φ(p1)ψ(p2)φ(p3)ψ(p4)〉, (3.1)

where φ is some real scalar,17 ψ and ψ̄ are a fermion and its hermitian conjugate in the

representations (1, 0) and (0, 1) respectively. We first study the structure of this correlator

(tensor structures, decomposition into OPE coefficients and conformal blocks) providing

all the necessary technical ingredients. We then apply the machinery of section 2 and study

the u-t and s-t bootstrap equations. We combine the results for both channels and show

how they complement each other providing a compact summary in section 3.2.3.

3.1 Structure of the correlator

The correlator (3.1) has the following structure

〈φ(p1)ψ(p2)φ(p3)ψ(p4)〉 =

2∑
I=1

gI(z, z̄)TI , (3.2)

where gI(z, z̄) is an arbitrary function of conformally invariant variables and TI are the

tensor structures defined as

T1 ≡ K4 Î42, T2 ≡ K4 Î42
31, K4 ≡

(
x2

12 x
2
34

)− τφ+τψ+1

2

(
x2

13

x2
24

) 1+τψ−τφ
2

. (3.3)

The objects Î42 and Î42
31 represent the spin structure of the correlator, their explicit form is

irrelevant for current discussion (see [32] for precise definitions).

We address now the s-, t- and u-channel OPE decompositions of the correlator (3.2).

For brevity we will use the following names for bosonic (traceless symmetric) and fermionic

operators consistent with (2.3)

O ≡ O(`,`)
τ and Ψ ≡ O(`+1,`)

τ . (3.4)

17The case of complex scalar is almost identical to the case of real scalar. The only difference hides in

the properties of the OPE coefficients.
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It is convenient to write explicitly the contribution of operators and their hermitian con-

jugates to the sum (2.7). The decomposition (2.5) reads then

〈φ(p1)ψ(p2)φ(p3)ψ(p4)〉 = (3.5)

=
∑
Ψ

(
λ〈φψΨ〉λ〈Ψφψ〉︸ ︷︷ ︸

≡PΨΨ

W dual seed
〈φψΨ〉〈Ψφψ〉 + λ〈φψΨ〉λ〈Ψφψ〉︸ ︷︷ ︸

≡PΨΨ

W seed
〈φψΨ〉〈Ψφψ〉

)
,

〈φ(p1)ψ(p2)φ(p3)ψ(p4)〉 = (3.6)

=
∑
Ψ

(
λ〈φψΨ〉λ〈Ψφψ〉︸ ︷︷ ︸

≡PΨΨ

W dual seed
〈φψΨ〉〈Ψφψ〉 + λ〈φψΨ〉λ〈Ψφψ〉︸ ︷︷ ︸

≡PΨΨ

W seed
〈φψΨ〉〈Ψφψ〉

)∣∣∣∣∣
p1↔p3

,

〈φ(p1)ψ(p2)φ(p3)ψ(p4)〉 = (3.7)

= 〈φ(p1)φ(p3) 〉 〈ψ(p2)ψ(p4)〉+
∑
O
λ〈φφO〉λ

a
〈Oψψ〉︸ ︷︷ ︸

≡PaO

W a
〈φφO〉〈Oψψ〉

∣∣∣∣∣
p2↔p3

.

The labels seed and dual seed indicate that the CPWs have the simplest possible structure

among the spinning blocks in 4D, see (2.8). Here we work with p = 1 (dual) seeds. In the

last equation the CPWs W a can be computed from the seed CPW with p = 0. We provide

below all the relevant information on how to do it.

The products of OPE coefficients λ are generically denoted by P . The OPE coefficients

λ are defined via the basis of tensor structures in a given 3-point function. We choose the

following basis of structures for correlators involving Ψ and Ψ

〈φ(p1)ψ(p2) Ψ(p3)〉 = λ〈φψΨ〉K3 Î32[Ĵ3
12]`−1, (3.8)

〈φ(p1)ψ(p2) Ψ(p3)〉 = λ〈φψΨ〉K3 K̂23
1 [Ĵ3

12]`−1, (3.9)

〈Ψ(p1)φ(p2)ψ(p3) 〉 = λ〈Ψφψ〉K3 K̂
13

2 [Ĵ1
23]`−1, (3.10)

〈Ψ(p1)φ(p2)ψ(p3) 〉 = λ〈Ψφψ〉K3 Î31[Ĵ1
23]`−1 (3.11)

and for correlators involving O

〈φ(p1)φ(p2)O(p3)〉 = λ〈φφO〉K3 [Ĵ3
12]`−1, (3.12)

〈O(p1)ψ(p2) ψ̄(p3)〉 = K3[Ĵ1
23]`−1

(
λ1
〈Oψψ̄〉Î

32Ĵ1
23 + λ2

〈Oψψ̄〉Î
12Î31

)
. (3.13)

The object K3, Îij , Ĵijk, K̂
jk

i and K̂jk
i encode spin and scaling structure of correlators. Their

explicit form is irrelevant for current discussion (see [32] for precise definitions).

The four OPE coefficients defined via (3.8)–(3.11) are not independent of each other.

Using complex conjugation of the defining correlators and permuting operators one gets
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the following relations18λ∗〈φψΨ〉 = λ〈Ψφψ〉

λ∗〈φψΨ〉 = −λ〈Ψφψ〉
=⇒

{
PΨΨ =

∣∣λ〈φψΨ〉
∣∣2

PΨΨ = −
∣∣λ〈φψΨ〉

∣∣2. (3.14)

Further constraints on the scaling dimensions and the OPE coefficients of external operators

in (3.8)–(3.13) appear if operators Ψ and O are conserved.

In case O is conserved, the correlators (3.12), (3.13) automatically satisfy the differ-

ential conservation equations. The only further constraint comes from the Ward identities

discussed in appendix A which allow to relate the OPE coefficients to normalization con-

stant of 2-point functions. We use the normalization convention of [32]. In the case of the

energy-momentum tensor T we have

λ〈φφT 〉 = −
2τφ
3π2

, λ1
〈Tψψ〉 =

2i (τψ − 1)

3π2
, λ2

〈Tψψ〉 = − 2i

π2
. (3.15)

In case Ψ is conserved, we deal with supersymmetric current. Conservation condi-

tion implies that in the correlators (3.8), (3.11) and in (3.9), (3.10) the twists of external

operators should be related as

τφ = τψ and τφ = τψ + 1 (3.16)

respectively. This is expected in SUSY theories where scalars and fermions belong to the

same multiplets. In principle we could have also used Ward identities to compute the OPE

coefficients in (3.8)–(3.11) in the presence of SUSY current, but this is beyond the scope

of our work.

Finally we can construct tensor structures in (3.13) from the single scalar (seed) tensor

structure by means of differential operators [26]

〈O(p1)ψ(p2) ψ̄(p3)〉 =
(
λ1
〈Oψψ̄〉, λ

2
〈Oψψ̄〉

)
×M×D 〈O(p1)φ(p2)φ(p3)〉(•), (3.17)

where (•) stresses that we do not deal with the full correlator but only with its kinematic

part (tensor structure), the differential basis of operators D and the matrix of coefficients

M can be chosen as follows

D =

(
D3
−0+ · D

−+0
2

∣∣∣
τφ→τψ+1

, D2
++0 · D

+0+
3

∣∣∣
τφ→τψ

)
,

M =

(
1 0

(τO−2τψ)(τO+2τψ−4)
4`(τO+`−1)

(τψ−1)−2

4`(τO+`−1)

)
.

(3.18)

Using (3.18) we can compute [21] W a in (3.7) as

W a =
2∑
b=1

MabDb W
(p=0)
seed . (3.19)

18Since the products of OPE coefficients form positive (negative) definite quantities one can try to study

the s-t bootstrap equations numerically using standard techniques. However since s- and t- channels are

not unitary (or reflection positive) one does not expect to have any bounds. This is because (as we will

see later) for such configuration the correlation function has an alternating factor (−1)` which prevents one

from constructing a positive definite functional.
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3.2 Analytic results

We study the u-t and s-t bootstrap equation for the correlator (3.1). We perform their

analytic analysis to the leading and sub-leading orders. The sub-leading corrections will

depend on the OPE coefficients of the minimal (lowest) twist operators. Let us discuss in

more details what minimal twist operator do we expect.

In the u-channel (3.7) we can exchange only traceless symmetric bosons, thus according

to (2.1) the minimal twist operators can be light scalars, conserved ` = 1 currents and the

energy-momentum tensor. We will denote twist and spin of these operator by τOm and

`Om . In the s-channel (3.5) we can exchange only fermionic operators, according to (2.1)

they could be light (1, 0) fermions or the super-symmetric current (2, 1). We will denote

twist and spin of these operators by τΨm and `Ψm .

We use the ansatz (2.34) and (2.32) for twists and products of OPE coefficients re-

spectively. We report these expressions here again for convenience

τ = τ0 +
γ

`D
+ . . . , P = 4−` `B

(
P 0 +

P 1

`C
+ . . .

)
. (3.20)

3.2.1 Equations: u-t-channel

We equate (3.7) with (3.6) and perform a change of variables according to the prescription

below (2.21). Schematically the bootstrap equation has the form (2.25) and can be studied

in the light-cone limit

ω � 1− ω � 1. (3.21)

Applying the procedure of section 2.2 we have found that there are two towers of large spin

fermionic operators

Ψ : X(`+1,`), Y (`+1,`) (3.22)

together with their hermitian conjugates X and Y . We determine their twists together

with the products of OPE coefficients

PXX , PXX , PY Y , PY Y . (3.23)

To the leading order twists read as

τ0
X

= τφ + τψ + 2n, τ0
Y = τφ + τψ + 2n+ 1, (3.24)

where n is a non-negative integer spanning the tower of operators. Both anomalous dimen-

sions are suppressed by the spin ` with the exponent

DX = DY = τOm (3.25)
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and have the following coefficients19

γb
X

= −(iP a=1
Om )

(−1)`Om f(τφ, τψ)

(τψ + 1)−
τOm

2

, (3.26)

γbY = −
(
τψ −

τOm
2 − 1

τψ − 1
(iP a=1
Om )−

τψ −
τOm

2

τψ − 1
(iP a=2
Om )

)
(−1)`Om f(τφ, τψ + 1)

(τψ + 1)−
τOm

2

, (3.27)

where we have defined

f(τφ, τψ) ≡
2τOm+2`Om

( τOm
2 + `Om

)
1
2√

π (τφ)−
τOm

2

n∑
j=0

(n)j (τφ + τψ + n− 3)j
( τOm

2 + `Om − j
)

2j

j!(τφ − 1)j (τψ − 1)j
.

(3.28)

We keep a = 1 and a = 2 to indicate explicitly that we deal with two OPE coefficients

(not to be confused with orders in our large spin perturbation theory). The subscript b

in the anomalous dimensions stays to indicate that it reproduces bosonic minimal-twist

operators. The products of OPE coefficients have the following B exponents

BXX = τφ + τψ −
1

2
, BY Y = τφ + τψ −

3

2
. (3.29)

The exponents BXX and BY Y are sub-leading to (3.29) and thus the products of OPE

coefficients governed by this exponents are zero to the order we work in. In the leading

order

P 0
XX

= −
2−τ

0
X g(τφ, τψ)

(τφ + τψ + n− 3)n
, P 0

Y Y
=

2−τ
0
Y g(τφ, τψ)(τψ − 1 + n)

(τφ + τψ + n− 2)n
, (3.30)

where we have defined

g(τφ, τψ) ≡
2
√
π (τφ − 1)n (τψ − 1)n
n! Γ (τφ) Γ (τψ + 1)

. (3.31)

Finally the sub-leading order OPE coefficients are suppressed by large spin ` with the

exponents

CXX = CY Y = τOm (3.32)

and the coefficients for n = 0 read as20

n = 0 : P 1 b
XX

= γb
X
h, P 1 b

Y Y
= γbY h, h ≡ ψ

(τOm
2

+ `Om

)
−ψ(1)− ln 2. (3.33)

We would like to note, that since our blocks are normalized with the factor (−1)` ac-

cording to (2.9), it was crucial to compensate this factor by another (−1)` coming from the

19In the equations below one should make a replacement P aT → c−1
T P aT for the energy-momentum tensor,

where cT > 0 is a real number which appears in the 〈TT 〉 normalization. This happens because of the

following. The normalization of 2-point functions is fixed only up to a positive real constant. In general we

use this freedom to set the constant to 1. In the case of conserved operators we do not have such a freedom

since the normalization of 2-point functions is completely fixed by the algebra they obey. To correct for

this the above replacement is required.
20We have also found expression for n 6= 0, however their form is not presentable in the paper. We refer

the reader to the accompanying code for details.
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analytic continuation (2.24) to reproduce the identity operator in our bootstrap equations.

Alternatively we could have worked with the s-t equations of another correlator

〈φ(p1)φ(p2)ψ(p3)ψ(p4)〉 (3.34)

as discussed around (2.26). In this case no analytic continuation is needed, however the

products of OPE coefficients P will neatly organize themselves into positive (negative)

definite quantities like in (3.14) times a factor (−1)`. Which means that the final equations

will never have a (−1)` factor. This will allow to reproduce the identity operator correctly.

3.2.2 Equations: s-t-channel

The s-t bootstrap equation is formed by equating the expression (3.5) with (3.6). Schemat-

ically it has the form (2.18) and can be studied in the light-cone limit (2.27).

Applying the procedure of section 2.2, we have found that there are again two towers

of large spin fermionic operators

Ψ : X ′(`+1,`), Y ′(`+1,`) (3.35)

together with their hermitian conjugates X
′

and Y
′
. The operators (3.35) are in principle

different from (3.22), we put a prime to indicate that. As before we determine their twists

together with products of OPE coefficients

P
X′X

′ , P
X
′
X′
, P

Y
′
Y ′
, P

Y ′Y
′ . (3.36)

In the leading order the twists read as

τ0
X
′ = τφ + τψ + 2n, τ0

Y ′ = τφ + τψ + 2n+ 1, (3.37)

where n is a non-negative integer spanning the tower of operators.

The coefficients P 0
X
′
X′

and P 0
Y ′Y

′ cannot contain a (−1)` factor in order to reproduce

correctly the absence of identity operator. We cannot however put further constraints on

them, they are left undetermined. As a consequence the exponents B
X
′
X′

and B
Y ′Y

′ are

also left undetermined.

The anomalous dimensions are suppressed by large ` with exponents D. Since the

exponents B are unknown we can only compute the differences

B
X
′
X′
−D

X
′ =

(
τφ + τψ −

1

2

)
− τΨm , B

Y ′Y
′ −DY ′ =

(
τφ + τψ −

3

2

)
− τΨm . (3.38)

The coefficients of anomalous dimensions are given in terms of unknown P 0 as21

n = 0 : γf
X
′ = (−1)`+1 ×

PΨmΨm

P 0
X
′
X′

×
f̃(τφ, τψ)

Γ
(

1
2 (τφ + τψ − τΨm + 1)

)2 , (3.39)

n = 0 : γfY ′ = (−1)`+1 ×
PΨmΨm

P 0
Y ′Y

′
×

f̃(τφ, τψ + 1)

Γ
(

1
2 (τφ + τψ − τΨm)

)2 , (3.40)

21We have computed also the values for n 6= 0, but we decided not to present them in the paper.
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where we have defined

f̃(τφ, τψ) ≡ 22−τφ−τψ√π(−1)`Ψm Γ(1 + 2`Ψm + τΨm)

Γ
(

1
2 (τφ − τψ + τΨm + 2`Ψm + 1)

)
Γ
(

1
2 (−τφ + τψ + τΨm + 2`Ψm + 1)

) . (3.41)

The sub-leading corrections to products of OPE coefficients are suppressed by the large

spin ` with exponents C. Again, we can only determine the differences

B
X
′
X′
−C

X
′
X′

=

(
τφ + τψ −

1

2

)
− τΨm , B

Y ′Y
′ −C

Y ′Y
′ =

(
τφ + τψ −

3

2

)
− τΨm . (3.42)

The coefficients P 1 are then given by

n = 0 : P 1 f

X
′
X′

=
1

2
γf
X
′ P

0
X
′
X′
h̃(τφ, τψ), P 1 f

Y ′Y
′ =

1

2
γf
Y ′Y

′ P
0
Y ′Y

′ h̃(τφ, τψ + 1), (3.43)

where we have defined

h̃(τφ, τψ)≡−2ψ(1)− ln4+ψ

(
τφ−τψ+τΨm +1

2
+`Ψm

)
+ψ

(
−τφ+τψ+τΨm +1

2
+`Ψm

)
.

(3.44)

3.2.3 Summary

In previous sections we found that to satisfy the bootstrap equations in the u-t channel and

in the s-t channel we are required to have operators (X,Y ) and (X ′, Y ′) respectively. They

look very similar: their leading twists (3.24) and (3.37) are identical and the structure of

exponents (3.25), (3.29), (3.32) and (3.38), (3.42) is strikingly similar. It is thus tempting

to identify the pair (X,Y ) with (X ′, Y ′).

Under the assumption that the identity operator in the u-t channel is fully reproduced

only by the operators (X,Y ) we can argue as follows. Since the operators (X ′, Y ′) cannot

contribute to the u-channel one is forced to set P 0
X
′
X′

= P 0
Y ′Y

′ = 0, because these coeffi-

cients do not have a (−1)` factor as was argued below (3.41) and would give a non-zero

contribution otherwise. However this requirement is inconsistent with the coefficients of

anomalous dimensions (3.39), (3.40) which would immediately blow up. Thus we conclude

that (X,Y ) = (X ′, Y ′).

We can then neatly combine the results of sections 3.2.1 and 3.2.2 as follows. The

twists of large spin fermionic operators read as

τX = τX = (τφ + τψ + 2n) +
γb
X

`τOm
+

γf
X

`τΨm
, (3.45)

τY = τY = (τφ + τψ + 2n+ 1) +
γbY
`τOm

+
γfY
`τΨm

, (3.46)

where the coefficients of anomalous dimensions γb are given in (3.26), (3.27) and γf are

given in (3.39), (3.40). The OPE coefficients have the following form

PXX = 4−``τφ+τψ− 1
2

(
P 0
XX

+
P 1 b
XX

`τOm
+
P 1 f

XX

`τΨm

)
, (3.47)

PY Y = 4−``τφ+τψ− 3
2

(
P 0
Y Y

+
P 1 b
Y Y

`τOm
+
P 1 b
Y Y

`τΨm

)
, (3.48)
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where P 0
XX

and P 0
Y Y

are given in (3.30), P 1 b
XX

and P 1 b
Y Y

are given in (3.33), P 1 f

XX
and P 1 f

Y Y
are given in (3.43) and

PXX = PY Y = 0 (3.49)

to the same order of expansion.

Looking at the final result (3.45)–(3.48) one notices that all the “fermionic” quantities

(labeled by a superscript f) contain a factor (−1)` and thus their contribution to the u-t

bootstrap equation completely vanishes, while all the “bosonic” quantities (labeled by a

superscript b) do not have a (−1)` factor and thus their contribution completely vanishes

in the s-t equation.

3.3 Generalized free theory

Here we consider a GFT with two primary fundamental fields: a real scalar φ and a

fermion ψ. See footnote 3 for the definition of GFTs. All the double-twist composite

primary operators Ψ(`,¯̀)22 are constructed from φ, ψ and their derivatives. We will not

need their precise expressions and instead are interested only in their schematic form. For

that consider a 3-point function

〈φ(p1)ψ(p2)Ψ(`,¯̀)(p3). (3.50)

It can be computed using Wick contractions and give a non vanishing result only if the

operators Ψ(`,¯̀) are of the following two types

X (`, `+1)
(p3) =

(
s3σ∂s̄3

)`
[∂2]n φ(x3)

(
s̄α̇3 ψ̄α̇(x3)

)
, (3.51)

Y(`+1, `)(p3) =
(
s3σ∂s̄3

)`
[∂2]n φ(x3)

(
sα3σ

µ

αβ̇
∂µψ̄

β̇(x3)
)
. (3.52)

We choose the curly font for the operators (X ,Y) in order to distinguish them from the

operators (3.22) and (3.35). The twists of these operators are easy to read off from their

schematic expressions

τX = τφ + τψ + 2n, τY = τφ + τψ + 2n+ 1. (3.53)

In GFT one can also compute the 4-point function (3.2) using Wick contractions

〈φ(p1)ψ(p2)φ(p3)ψ̄(p4)〉 = 〈φ(p1)φ(p3)〉 〈ψ(p2)ψ̄(p4)〉 =
−i Î42

(x2
13)τφ(x2

24)τψ+1 . (3.54)

It is clear that in OPE of the 4-point function (3.2) only the double-twist operators (3.51)

and (3.52) can be exchanged. Thus, given the explicit expression for the 4-point func-

tions (3.54), the explicit values of twists of exchanged operators (3.53), one can use the s-,

t- and u- channel expansions (3.5), (3.6) and (3.7) in conformal blocks to compute products

of OPE coefficients in the GFT.

22We have suspended here the convention (2.3) for Ψ(`,¯̀) for simplicity of narration.
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u-channel is the simplest case since the identity operator (the first term in (3.7)) repro-

duces (3.54) precisely. Thus there are no other bosonic operators in our GFT which can

be exchanged in the 4-point function (3.2).

s-channel suites the best for determining the OPE coefficients of the operators (3.51)

and (3.52). Equating the s-channel expansion (3.5) with (3.54) and splitting the obtained

expression into independent tensor structures we get two equations of the schematic form

(zz̄)# δI1 =
∞∑
`=0

∞∑
n=0

f I`,n(z, z̄), (3.55)

where δ is the Kronecker symbol and f I`,n(z, z̄) represents conformal blocks together with

the OPE coefficients. Expanding these equations around z = 0 and z̄ = 0 and equating

coefficients in front of the same powers of z and z̄ on both sides, one gets a system of

linear equations for the coefficients PXX and PYY . Only a finite number of coefficients P

contribute at each order of expansion, thus, the system is exactly solvable. We found a

solution for several values of ` and n and guessed the generic solution, which is

PGFTXX (n, `) = −
(τφ − 1)n (τψ − 1)n
n! (τφ + τψ + n− 3)n

×

×
(τφ)`+n (τψ + 1)`+n

`! (`+ 2)n (τφ + τψ + `+ n− 1)n (τφ + τψ + `+ 2n)`
,

PGFTYY (n, `) = +
(τφ − 1)n (τψ − 1)n+1

n! (τφ + τψ + n− 2)n
×

×
(τφ)`+n+1 (τψ + 1)`+n

`! (l + 2)n+1(τφ + τψ + `+ n− 1)1+n (τφ + τψ + `+ 2n+ 1)`

(3.56)

together with

PGFTXX (n, `) = PGFTYY (n, `) = 0. (3.57)

Notice that signs of the above expression neatly match the signs in (3.14) providing a nice

consistency check.

t-channel is very similar to the s-channel. We can equate the t-channel expansion (3.6)

with (3.54), split the resulting expression in two independent tensor structures and get two

equations of the schematic form

���
(zz̄)#δI1 =

∞∑
`=0

∞∑
n=0

���
(zz̄)#

(
(1− z)(1− z̄)

)#
f̃ I`,n(1− z, 1− z̄) (3.58)

for the OPE coefficients. These equations are apparently very different from (3.55)23 but

are in fact equivalent. Expanding (3.55) around z = z̄ = 1 one finds a solution for the

OPE coefficients which is identical to (3.56). This is another nice consistency check.

23Modulo the obvious z ↔ 1−z and z ↔ 1−z exchange, we have a multiplier coming from the kinematic

factor and we have a mixing of conformal blocks.
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Connection to the analytic bootstrap. Taking the leading behavior of (3.47), (3.48)

and comparing it with (3.56) one can notice that the following holds

4−``τφ+τψ− 1
2P 0

XX
= lim

`→∞
PGFT
XX , 4−``τφ+τψ− 3

2P 0
Y Y

= lim
`→∞

PGFT
YY . (3.59)

This happens because the equations for the GFT OPE coefficients match the bootstrap

equations in the light-cone limit. More precisely, take the t-channel GFT equation (3.58)

and change variables according to (2.21) and the prescription below it. This expression

will then be equivalent to (2.25) in the light-cone limit (3.21). Thus both equations should

have the same asymptotic solution.

4 Conclusions

In this paper we discuss the analytic bootstrap approach [1, 2] to general 4-point functions

in 4D CFTs [3, 4, 31, 32]. To simplify computations in practice we develop and attach to

the paper a little Mathematica code “analyticBootstrap4D.m”. We proceed by studying

in detail the s-t and u-t bootstrap equations of the scalar-fermion correlator 〈φψ φψ〉 and

show how the results from these two channels complement each other. We find that for

every pair of scalar φ and fermion ψ operators in the spectrum correspond two infinite

towers of large spin fermionic operators. We compute their twist and products of OPE

coefficients in the leading and sub-leading order (3.45)–(3.48). The sub-leading correc-

tions are governed by the minimal-twist operators in the CFT. They can be both bosonic

(light scalars, conserved currents and the energy-momentum tensor) and fermionic (light

(1, 0) and (0, 1) fermions and the supersymmetric current). We provide details of all the

computations in the attached Mathematica file “Example.nb”.

To complement the discussion we have also studied the scalar-fermion GFT. We derive

closed-form expression for the GFT data (3.53) and (3.56). We show that in the large

spin limit the GFT data perfectly matches the leading twist and OPE coefficients obtained

using the analytic bootstrap.

In the same way of this paper one can study other spinning correlators. To complement

numerical bootstrap studies in future it might be interesting to consider correlators of the

form 〈ψ̄ψψ̄ψ〉 and 〈JJJJ〉, where J is the conserved current. One can also study 〈φJ J̄ φ〉,
where J is (2,1) fermion (spin 3/2 fermion). In case J is conserved, analogously to [87, 88]

one can access the supersymmetric conformal collider bounds.

The results of section 3 can be interpreted in the context of AdS. One can say that the

double-twist operators X and Y on the CFT side are dual to a system of largely separated

scalar and fermion particle orbiting each other with the large relative angular momentum

`.24 The anomalous dimensions of operators X and Y would then correspond in AdS

to energy shifts of the original system caused by interactions between orbiting particles.

For our system we have two types of such interactions bosonic attractive/repulsive forces

(gravity, Higgs-like force) or fermionic interactions which cause swapping of orbiting par-

ticles. It would be interesting to compute the energy shifts due to these interactions in

24This system will also have two states `⊗ 1
2

= (`− 1
2
)⊕ (`+ 1

2
). Here we use half-integer values to label

representations. It is different from the rest of the paper where we use only integer values.
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AdS [82, 86]25 and compare them to anomalous dimensions found in this work. Here we

only notice that the anomalous dimensions induced by the energy-momentum tensor are

negative. This can be easily seen by plugging (3.15) into (3.26) and (3.27), indicating that

gravity in AdS between scalar and fermion particle is attractive.

Recent discovery of the Lorentizan inversion formula [74] for scalars brings analytic

studies to a new level. Its generalization to spin is a matter of time. Our results might

serve as a benchmark for checking future spinning inversion formula in 4D.
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A Ward identities

As a consequence of conformal symmetry there exist a conserved traceless symmetric spin

two operator, the energy momentum tensor Tµν(x). In radial quantization26 one can form

15 special non-local operators (conserved charges) Qε [11, 12]

Qε ≡ −
∫
|x|3 dS3 x̂µ

(
εν(x) Tµν(x)

)
, x̂µ ≡ xµ

|x|
,

∫
dS3 = 2π2, (A.1)

where εν(x) is the Killing vector corresponding to the most general infinitesimal conformal

transformation xν → xν + εν(x) which has the form

εν(x) ≡ aν + λxν + ω[νρ]x
ρ +

(
bνx

2 − 2(b · x)xν

)
. (A.2)

Here aν , λ, ω[νρ] and bν are some constants parameters associated to translations, dilata-

tion, rotations and special conformal transformations respectively. We denote the associ-

ated conserved charges Qε by Pµ, D, Mµρ and Kµ. They form the conformal algebra and

give rise to commutation relations with primary operators, see (A.14)-(A.17) in [32]. By

injecting the charges Qε between two states and evaluating them using (A.1) on one side

and commutation relations on another side, one arrives at Ward identities.

25In doing that techniques similar to [101] might be of help.
26To work with radial quantization we need to analytically continue all our operators to Euclidean sig-

nature. As a result we get an overall factor −1 = (−i)2 in (A.1), see [37].
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Tensor vs. spinor notation. Conserved bosonic traceless symmetric currents are nat-

urally defined in tensor language. To make connection to operators in spinor formalism

used in this work we need to provide a map between tensor and spinor notation. This map

is not uniquely defined, we make the following choice

O(x)α1...α`; β̇1...β̇` = σ̄(β̇1α1
µ1

. . . σ̄β̇`α`)µ`
×O(x)µ1...µ` , (A.3)

where symmetrization is performed for both sets of dotted and undotted indices indepen-

dently. It has the following inverse operation

O(x)µ1...µ` ≡ (−1)`

2`
× σµ1

α1β̇1
. . . σµ`

α`β̇`
×O(x)α1...α`; β̇1...β̇` . (A.4)

Combined with an index-free spinor notation

O(x)α1...α`; β̇1...β̇` =
(−1)`

`!2

∏̀
i=1

∏̀
j=1

[∂s]
αi [∂s̄]

α̇j O(x, s, s̄), (A.5)

defined in equation (2.3) in [32], we arrive at a compact formula27

O(x)µ1...µ` ≡ 1

2` `!2

∏̀
i=1

(∂sσ
µi∂s̄)O(x, s, s̄). (A.7)

Using (A.7) and the definitions of conformal conserved charges (A.1) together with (A.2)

one can write for example28

D = − 1

16

∫
|x|2 dS3 (∂sx∂s̄)

2 T (x, s, s̄), (A.8)

Pµ = − 1

16

∫
|x|2 dS3 (∂sσ

µ∂s̄)(∂sx∂s̄) T (x, s, s̄). (A.9)

Applications. Consider first a scalar correlator with a traceless symmetric opera-

tor (3.12). It can be used to derive an OPE which in the leading order reads as

O(`,`)
∆ (x, s, s̄) φ(0) = (−1)`λ〈Oφφ̄〉

(s̄x̄s)`

x∆+l
φ(0) + . . . . (A.10)

In case O(`,`)
∆ is the energy-momentum tensor, the Ward identities for the charge D lead to

λ〈Tφφ〉 = λ〈φφT 〉 = −
2∆φ

3π2
, (A.11)

27We have defined the following short-hand notation for derivatives in auxiliary spinors

[∂s]
α ≡ ∂

∂sα
, [∂s̄]

α̇ ≡ ∂

∂sα̇
, [∂s]α ≡ −

∂

∂sα
, [∂s̄]α̇ ≡ −

∂

∂sα̇
. (A.6)

The extra minus signs in the above expressions are needed to define the standard raising and lowering

procedure in a consistent way. We also define coordinates in spinor notations as xαβ̇ ≡ xµσ
µ

αβ̇
and x̄α̇β ≡

xµσ̄α̇βµ .
28Analogous expression can also be written for Mµν and Kµ.
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where we have used the commutation relation [D,φ(0)] = ∆φ φ(0). The OPE in the case

of fermion correlator (3.13) reads as

O(`,`)
∆ (x, s, s̄) ψ(0, t) =

= i (−1)`
(s̄x̄s)`−1

x∆+l
×
(
λ1
〈Oψψ̄〉(s̄x̄s) + λ2

〈Oψψ̄〉(s̄x̄t)(s · ∂t)
)
ψ(0, t) + . . . . (A.12)

Analogously to the scalar case, if O(`,`)
∆ is the energy-momentum tensor, the charge D gives

one constraint on the OPE coefficients

2λ1
〈Oψψ̄〉 − λ

2
〈Oψψ̄〉 =

4i∆ψ

3π2
, (A.13)

where we have used [D,ψ(0, t)] = ∆ψ ψ(0, t). One can verify that the result (3.15) obeys

this constraint. To completely fix both OPE coefficients the charge D is obviously not

enough and one should use other conserved charges, for example Pµ. Unfortunately its

action on the leading OPE term (A.12) vanishes and one should extend the OPE to sub-

leading order. We find however that working with full correlation function at this point is

more straightforward. We do not report the details, but only the final result (3.15).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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