Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A robust localization system for multi-robot formations based on an extension of a Gaussian mixture probability hypothesis density filter
 
research article

A robust localization system for multi-robot formations based on an extension of a Gaussian mixture probability hypothesis density filter

Wasik, Alicja  
•
Lima, Pedro U.
•
Martinoli, Alcherio  
2020
Autonomous Robots

This paper presents a strategy for providing reliable state estimates that allow a group of robots to realize a formation even when communication fails and the tracking data alone is insufficient for maintaining a stable formation. Furthermore, the tracking information does not provide the identity of the robot, therefore a simple fusion of tracking and communication data is not possible. We extend a Gaussian mixture probability hypothesis density filter to incorporate, firstly, absolute poses exchanged by the robots, and secondly, the geometry of the desired formation. Our method of combining communicated data, information about the formation and sensory detections is capable of maintaining the state estimates even when long-duration occlusions occur, and improves awareness of the situation when the communication is sporadic or suffers from short-term outage. The proposed method is validated using a high-fidelity simulator in scenarios with a formation of up to five robots. The results show that the proposed tracking strategy allows for sustaining formations in cluttered environments, with high measurement uncertainty and low quality communication.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

AR_2020.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

1.46 MB

Format

Adobe PDF

Checksum (MD5)

04f3e6a759624e0b56cb074c78d0adb8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés