Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stabilization of the chiral phase of theSU(6m)Heisenberg model on the honeycomb lattice withmparticles per site formlarger than 1
 
research article

Stabilization of the chiral phase of theSU(6m)Heisenberg model on the honeycomb lattice withmparticles per site formlarger than 1

Dufour, Jérôme  
•
Mila, Frédéric  
2016
Physical Review A

Low-dimensional quantum magnets at finite temperatures present a complex interplay of quantum and thermal fluctuation effects in a restricted phase space. While some information about dynamical response functions is available from theoretical studies of the one-triplet dispersion in unfrustrated chains and ladders, little is known about the finite-temperature dynamics of frustrated systems. Experimentally, inelastic neutron scattering studies of the highly frustrated two-dimensional material SrCu2(BO3)2 show an almost complete destruction of the one-triplet excitation band at a temperature only 1/3 of its gap energy, accompanied by strong scattering intensities for apparent multi-triplet excitations. We investigate these questions in the frustrated spin ladder and present numerical results from exact diagonalization for the dynamical structure factor as a function of temperature. We find anomalously rapid transfer of spectral weight out of the one-triplet band and into both broad and sharp spectral features at a wide range of energies, including below the zero-temperature gap of this excitation. These features are multi-triplet bound states, which develop particularly strongly near the quantum phase transition, fall to particularly low energies there, and persist all the way to infinite temperature. Our results offer valuable insight into the physics of finite-temperature spectral functions in SrCu2(BO3)2 and many other highly frustrated spin systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevA.94.033617.pdf

Access type

openaccess

Size

301.25 KB

Format

Adobe PDF

Checksum (MD5)

fa8f5f487abddc10e601b7448c6aafd9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés