Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. No time for drifting: Comparing performance and applicability of signal detrending algorithms for real-time fMRI
 
research article

No time for drifting: Comparing performance and applicability of signal detrending algorithms for real-time fMRI

Kopel, R.  
•
Sladky, R.
•
Laub, P.
Show more
May 1, 2019
Neuroimage

As a consequence of recent technological advances in the field of functional magnetic resonance imaging (fMRI), results can now be made available in real-time. This allows for novel applications such as online quality assurance of the acquisition, intra-operative fMRI, brain-computer-interfaces, and neurofeedback. To that aim, signal processing algorithms for real-time fMRI must reliably correct signal contaminations due to physiological noise, head motion, and scanner drift. The aim of this study was to compare performance of the commonly used online detrending algorithms exponential moving average (EMA), incremental general linear model (iGLM) and sliding window iGLM (iGLM(window)). For comparison, we also included offline detrending algorithms (i.e., MATLAB's and SPM8's native detrending functions). Additionally, we optimized the EMA control parameter, by assessing the algorithm's performance on a simulated data set with an exhaustive set of realistic experimental design parameters. First, we optimized the free parameters of the online and offline detrending algorithms. Next, using simulated data, we systematically compared the performance of the algorithms with respect to varying levels of Gaussian and colored noise, linear and non-linear drifts, spikes, and step function artifacts. Additionally, using in vivo data from an actual rte-fMRI experiment, we validated our results in a post hoc offline comparison of the different detrending algorithms. Quantitative measures show that all algorithms perform well, even though they are differently affected by the different artifact types. The iGLM approach outperforms the other online algorithms and achieves online detrending performance that is as good as that of offline procedures. These results may guide developers and users of real-time fMRI analyses tools to best account for the problem of signal drifts in real-time fMRI.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S1053811919301545-main.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.36 MB

Format

Adobe PDF

Checksum (MD5)

52f3185cc0032b402293a8e68ec279d3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés