Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Boosting contact sliding and wear protection via atomic intermixing and tailoring of nanoscale interfaces
 
research article

Boosting contact sliding and wear protection via atomic intermixing and tailoring of nanoscale interfaces

Dwivedi, Neeraj
•
Yeo, Reuben J.  
•
Dhand, Chetna
Show more
January 1, 2019
Science Advances

Friction and wear cause energy wastage and system failure. Usually, thicker overcoats serve to combat such tribological concerns, but in many contact sliding systems, their large thickness hinders active components of the systems, degrades functionality, and constitutes a major barrier for technological developments. While sub-10-nm overcoats are of key interest, traditional overcoats suffer from rapid wear and degradation at this thickness regime. Using an enhanced atomic intermixing approach, we develop a similar to 7- to 8-nm-thick carbon/silicon nitride (C/SiNx) multilayer overcoat demonstrating extremely high wear resistance and low friction at all tribological length scales, yielding similar to 2 to 10 times better macroscale wear durability than previously reported thicker (similar to 20 to 100 nm) overcoats on tape drive heads. We report the discovery of many fundamental parameters that govern contact sliding and reveal how tuning atomic intermixing at interfaces and varying carbon and SiNx thicknesses strongly affect friction and wear, which are crucial for advancing numerous technologies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

eaau7886.full.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC

Size

4.55 MB

Format

Adobe PDF

Checksum (MD5)

ff88931e656612d14fa028af694fd82f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés