Files

Abstract

Self-organized collective behavior has been analyzed in diverse types of gregarious animals. Such collective intelligence emerges from the synergy between individuals, which behave at their own time and spatial scales and without global rules. Recently, robots have been developed to collaborate with animal groups in the pursuit of better understanding their decision-making processes. These biohybrid systems make cooperative relationships between artificial systems and animals possible, which can yield new capabilities in the resulting mixed group. However, robots are currently tailor-made to successfully engage with one animal species at a time. This limits the possibilities of introducing distinct species-dependent perceptual capabilities and types of behaviors in the same system. Here, we show that robots socially integrated into animal groups of honeybees and zebrafish, each one located in a different city, allowing these two species to interact. This interspecific information transfer is demonstrated by collective decisions that emerge between the two autonomous robotic systems and the two animal groups. The robots enable this biohybrid system to function at any distance and operates in water and air with multiple sensorimotor properties across species barriers and ecosystems. These results demonstrate the feasibility of generating and controlling behavioral patterns in biohybrid groups of multiple species. Such interspecies connections between diverse robotic systems and animal species may open the door for new forms of artificial collective intelligence, where the unrivaled perceptual capabilities of the animals and their brains can be used to enhance autonomous decision-making, which could find applications in selective "rewiring" of ecosystems.

Details

Actions

Preview