Combined rehabilitation promotes recovery of motor functionality in a mouse model of stroke

Neuro-rehabilitative research is developing novel strategies to enhance the effectiveness of therapies after stroke by using a combination of physical and plasticizing treatments 1-3. Previous studies have shown that repeated optogenetics stimulation of neurons in the peri-lesioned area induces a significant improvement in cerebral blood flow and neurovascular coupling response 4-6. Up to now the mechanisms underneath the reshaping of brain circuitry induced by rehabilitation after stroke are widely unknown. To investigate how rehabilitative therapies shape new cortical maps in the peri-infarct region, we induce a photothrombotic stroke in the primary motor cortex and the expression of Channelrhodopsine 2 (ChR2) in the peri-infarct area on Thyl-GCaMP6f mice. To promote functional recovery after stroke we use both an optogenetic strategy to stimulate targeted excitatory neurons in the peri-lesional region and motor training on a robotic platform (M-Platform) 7. A 473 nm laser repeatedly stimulates ChR2-transfected neurons; the optostimulation is performed five days a week. The motor rehabilitation consists in a pulling task: after the forelimb is passively extended by the linear actuator of the M-platform, the animal has to pull back up to the resting position. By analysing the spatio-temporal calcium dynamic and the reshaping of cortical activation area during the movement throughout the treatment period, we found that the combined treatment restores cortical activation profiles during the forelimb movement. Through behavioural experiments, using Schallert test, we also evaluate changes of forelimb functionality during rehabilitation. Our combination of techniques allows obtaining unprecedented views on cortical plasticity induced by rehabilitative therapies.


Published in:
Neural Imaging And Sensing 2019, 10865, 108650R
Presented at:
Conference on Neural Imaging and Sensing, San Francisco, CA, Feb 04-05, 2019
Year:
Jan 01 2019
Publisher:
Bellingham, SPIE-INT SOC OPTICAL ENGINEERING
ISSN:
1605-7422
ISBN:
978-1-5106-2373-6
Keywords:




 Record created 2019-06-18, last modified 2019-08-12


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)