Cavitation induction by projectile impacting on a water jet

The present paper focuses on the simulation of the high-velocity impact of a projectile impacting on a water-jet, causing the onset, development and collapse of cavitation. The simulation of the fluid motion is carried out using an explicit, compressible, density-based solver developed by the authors using the OpenFOAM library. It employs a barotropic two-phase flow model that simulates the phase-change due to cavitation and considers the co-existence of non-condensable and immiscible air. The projectile is considered to be rigid while its motion through the computational domain is modelled through a direct-forcing Immersed Boundary Method. Model validation is performed against the experiments of Field et al. (2012), who visualised cavity formation and shock propagation in liquid impacts at high velocities. Simulations unveil the shock structures and capture the high-speed jetting forming at the impact location, in addition to the subsequent cavitation induction and vapour formation due to refraction waves. Moreover, model predictions provide quantitative information and a better insight on the flow physics that has not been identified from the reported experimental data, such as shock-wave propagation, vapour formation quantity and induced pressures. Furthermore, evidence of the Richtmyer-Meshkov instability developing on the liquid-air interface are predicted when sufficient dense grid resolution is utilised. (C) 2019 Elsevier Ltd. All rights reserved.


Published in:
International Journal Of Multiphase Flow, 114, 128-139
Year:
May 01 2019
Publisher:
Oxford, PERGAMON-ELSEVIER SCIENCE LTD
ISSN:
0301-9322
1879-3533
Keywords:




 Record created 2019-06-18, last modified 2019-07-08


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)