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Abstract	
  

Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndromes 15	
  

spanning a wide spectrum of diseases, from simple steatosis to the more complex 

nonalcoholic steatohepatitis. To identify the deregulation that occurs in metabolic 

processes at the molecular level that give rise to these various NAFLD phenotypes, 

algorithms such as pathway enrichment analysis (PEA) can be used. These analyses 
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require the use of predefined pathway maps, which are composed of reactions 20	
  

describing metabolic processes/subsystems. Unfortunately, the annotation of the 

metabolic subsystems can differ depending on the pathway database used, making 

these approaches subject to biases associated with different pathway annotations, and 

these methods cannot capture the balancing of cofactors and byproducts through the 

complex nature and interactions of genome-scale metabolic networks (GEMs). Here, 25	
  

we introduce a framework entitled Minimum Network Enrichment Analysis 

(MiNEA) that is applied to GEMs to generate all possible alternative minimal 

networks (MiNs), which are possible and feasible networks composed of all the 

reactions pertaining to various metabolic subsystems that can synthesize a target 

metabolite. We applied MiNEA to investigate deregulated MiNs and to identify key 30	
  

regulators in different NAFLD phenotypes, such as a fatty liver and liver 

inflammation, in both humans and mice by integrating condition-specific 

transcriptomics data from liver samples. We identified key deregulations in the 

synthesis of cholesteryl esters, cholesterol, and hexadecanoate in both humans and 

mice, and we found that key regulators of the hydrogen peroxide synthesis network 35	
  

were regulated differently in humans and mice. We further identified which MiNs 

demonstrate the general and specific characteristics of the different NAFLD 

phenotypes. MiNEA is applicable to any GEM and to any desired target metabolite, 

making MiNEA flexible enough to study condition-specific metabolism for any given 

disease or organism.  40	
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Author	
  Summary	
  

This work aims to introduce a network-based enrichment analysis using metabolic 

networks and transcriptomics data. Previous pathways/subsystems enrichment 

methods use predefined gene annotations of metabolic processes and gene annotations 

can differ based on different resources and can produce bias in pathways definitions. 45	
  

Thus, we introduce a framework, Minimum Network Enrichment Analysis (MiNEA), 

which first finds all possible minimal-size networks for a given metabolic 

process/task and then identifies deregulated minimal networks using deregulated 

genes between two conditions. MiNEA also identifies the deregulation in key 

reactions that are overlapped across all possible minimal-size networks.  We applied 50	
  

MiNEA to identify deregulated metabolic tasks and their synthesis networks in the 

steatosis and nonalcoholic steatohepatitis (NASH) disease using a metabolic network 

and transcriptomics data of mouse and human liver samples. We identified key 

regulators of NASH form the synthesis networks of hydrogen peroxide and ceramide 

in both humans and mice. We also identified opposite deregulation in NASH for the 55	
  

phosphatidylserine synthesis network between humans and mice. MiNEA finds 

synthesis networks for a given target metabolite and due to this it is flexible to study 

deregulation in different phenotypes.  MiNEA can be widely applicable for studying 

context-specific metabolism for any organism because the metabolic networks and 

context-specific gene expression data are now available for many organisms.     60	
  

Introduction	
  	
  

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver disease 

in western countries [1], affecting an estimated 25% to 45% of the general US 
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population, though this percentage is much higher among individuals suffering from 

obesity and diabetes [1, 2]. There are two categories of NAFLD: steatosis, which is an 65	
  

accumulation of fat in the liver, and nonalcoholic steatohepatitis (NASH), which 

consists of the additional presence of liver inflammation and hepatocellular injury 

with or without fibrosis [2].  

Gene deregulation occurs when the cell no longer maintains precise control over 

certain genes, and therefore expressed proteins, and is associated with various 70	
  

diseases such as NAFLD. Determining which genes are deregulated in disease and 

how these genes are deregulated can increase the understanding of any disease as well 

as provide new pathways for therapeutic treatments. To study gene deregulation, 

pathway enrichment analysis (PEA) uses maps of metabolic processes and subsystem 

reactions to determine if a given list of genes (gene set) is associated with a certain 75	
  

biochemical pathway, shedding important conceptual insight into gene deregulation. 

Many PEA algorithms, such as ConsensusPathDB [3] and Piano [3, 4], have been 

developed to identify biological processes based on gene sets, while other algorithms, 

such as IMPaLA [5], are based on both gene and metabolite sets. While these 

algorithms can successfully provide insights about various disease phenotypes, they 80	
  

use predefined metabolic maps that are limited to our current knowledge of these 

hugely intricate pathways and can differ depending on the pathway database used, 

meaning they could miss information about the wide range of complex metabolic 

interactions. These approaches are also subject to biases associated with the different 

pathway annotations, and they cannot capture the balancing of cofactors and 85	
  

byproducts through the complex nature and interactions of genome-scale metabolic 

networks (GEMs). 
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To overcome this, a method has been developed based on elementary flux modes 

(EFMs), which are non-decomposable flux distributions in metabolic networks 

[6].These flux distributions indicate a conceptual description of metabolic pathways. 90	
  

This method computes EFMs from a given GEM and uses tissue-specific 

transcriptomics to identify a subset of tissue-specific EFMs. However, the 

enumeration of all EFMs in a GEM can be computationally intractable, and EFMs are 

not necessarily specific to a target metabolite synthesis, meaning that targeted 

pathways are not always able to elucidated using EFMs.  95	
  

One could also use graph-based methods (GBM) that require network topologies and 

gene expression profiles as inputs to extract deregulated subnetworks that occur 

between two conditions [7-9]. These methods have been applied to protein-protein 

networks for prostate cancer study, and they are potentially applicable to metabolic 

networks. GBM methods use graph-theoretic properties on network topologies but 100	
  

miss information about additional constraints, such as mass balance [10] and 

thermodynamics [11]. Ideally, the results for these studies would include a set of mass 

balanced subnetworks that could be used to understand the carbon, energy, and redox 

flows from precursor metabolites to target metabolites and complex metabolic tasks. 

Here,	
  we	
  propose	
  a	
  method	
  called	
  Minimal	
  Network	
  Enrichment	
  Analysis	
  105	
  

(MiNEA)	
  that	
  compares	
  two	
  conditions	
  using	
  transcriptomics,	
  proteomics,	
  and	
  

metabolomics	
  to	
  identify	
  deregulated	
  minimal	
  networks	
  (MiNs),	
  which	
  are	
  

reactions	
  pertaining	
  to	
  various	
  metabolic	
  subsystems	
  that	
  can	
  synthesize	
  a	
  

target	
  metabolite.	
  The	
  MiNEA	
  algorithm	
  works	
  by	
  formulating	
  metabolic	
  tasks	
  

(MTs)	
  to	
  mimic	
  the	
  various	
  NAFLD	
  phenotypes,	
  such	
  as	
  lipid	
  droplet	
  formation,	
  110	
  

lipoapoptosis,	
  liver	
  inflammation,	
  and	
  oxidative	
  stress.	
  These	
  MTs	
  include	
  the	
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known	
  set	
  of	
  metabolites	
  necessary	
  to	
  form	
  the	
  modeled	
  phenotype.	
  The	
  cell	
  can	
  

use	
  different	
  pathways	
  to	
  form	
  the	
  same	
  metabolites	
  and	
  create	
  the	
  same	
  

phenotypes,	
  and	
  the	
  purpose	
  of	
  MiNEA	
  is	
  to	
  identify	
  deregulated	
  alternative	
  

routes	
  for	
  a	
  given	
  MT	
  between	
  two	
  conditions,	
  such	
  as	
  a	
  control	
  and	
  treatment.	
  115	
  

First,	
  MiNEA	
  uses	
  these	
  MTs	
  to	
  compute	
  alternative	
  thermodynamically	
  feasible	
  

MiNs	
  applying	
  thermodynamic	
  constraints	
  [11,	
  12]	
  to	
  a	
  mouse	
  GEM	
  [13].	
  Then,	
  it	
  

uses	
  mouse	
  and	
  human	
  liver	
  sample	
  expression	
  data	
  [1,	
  14]	
  and	
  identifies	
  

deregulated	
  metabolic	
  processes	
  in	
  mice	
  and	
  humans	
  that	
  potentially	
  lead	
  to	
  the	
  

NAFLD	
  phenotypes. 120	
  

MiNEA identified an upregulation in the oxidative stress synthesis network in mice, 

but this network was found to be downregulated in humans. The cholesterol and 

triacylglycerol synthesis networks were deregulated in humans only, while the 

ceramide synthesis network was only deregulated in mice. We found downregulated 

reactions in the synthesis network for cholesteryl esters, cholesterol, and alanine in 125	
  

both humans and mice. We further identified downregulated reactions in the 

superoxide anion (SOA) synthesis network in humans, specifically in NASH as 

opposed to steatosis, while upregulation was found in the SOA synthesis network in 

mice. This perturbation through the SOA synthesis network in NASH suggested an 

unbalanced ceramide synthesis, and studies have shown that the ceramide is a key 130	
  

regulator of apoptosis and promotes fibrosis in the hepatic steatosis model [15, 16].  

MiNEA can generate MiNs for any target metabolite, e.g. a metabolite produced 

under specific phenotypes or a biomass building block [17] that is needed for cell 

growth. Additionally, MiNEA can integrate condition- and context-specific omics 

data to understand the deregulated phenotypes associated with a set of differentially 135	
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expressed genes. These characteristics make MiNEA a versatile tool for exploring and 

understanding different metabolic phenotypes. 
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Results	
  and	
  Discussions	
  

Experimental	
  details	
  for	
  MiNEA	
  

Nonalcoholic fatty liver disease (NAFLD) has been defined as a metabolic disease 140	
  

associated with insulin-resistance syndrome [18]. To study the differences seen in 

NAFLD phenotypes between mouse and human manifestations, we collected human 

expression data from the three diagnosis groups, normal (N), steatosis (S), and 

nonalcoholic steatohepatitis (NS), and mouse expression data from control and DDC-

supplemented diet conditions for three genetically different mouse strains, AJ, B6, 145	
  

and PWD. DDC-supplemented diet reproduces steatosis and NASH phenotypes (see 

Materials and Methods for detail). We refer to these data as human expression data 

and mouse expression data throughout this section and integrate it into a mouse model 

iMM1415 that is constructed based on a human GEM Recon1 [13]. We analyzed both 

human and mouse MTs using iMM1415 with the assumption that both types of 150	
  

mammalian cells have a similar metabolism (See S1 text). In the following sections, 

we analyzed the deregulation of minimal networks in core reactions and enriched 

minimal networks based on the deregulation (up- or downregulated) genes.  

	
  
Minimal	
  networks	
  	
  155	
  

GEMs represent an entire cellular metabolic network in the form of mathematical 

constraints [19]. These network reconstructions have grown rapidly in the last 

decades, and now many GEMs for different organisms are available [20]. GEMs and 

condition-specific experimental data can be employed to generate and test hypotheses 

using the Minimal Network Enrichment analysis (MiNEA) framework that has been 160	
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developed in this study. As compared to a method the had been proposed for finding 

subnetworks from a GEM that optimizes only some part of metabolic networks to find 

subnetworks [21], MiNEA optimizes whole metabolic networks to find minimal 

networks.	
  

To examine the data that can be derived from MiNEA in terms of NAFLD, we first 165	
  

wanted to compute MiNs for each of the MTs in Table 7 (see Materials and Methods 

for the table) that were significant phenotypes in NAFLD. Instead of representing a 

main linear route between precursors and targets of MTs, a MiN is instead composed 

of many subsystems integrated into subnetworks that must be active, meaning 

reactions of subnetworks carries fluxes, to fulfill the target MT. The MiNEA 170	
  

algorithm facilitates enumeration of alternative MiNs and provides more flexibility to 

the analysis of different metabolic phenotypes and their respective environmental and 

genetic perturbations. The use of MT for analysis with MiNEA allows this method to 

be more easily generalized and applied to the study of other metabolic phenotypes and 

diseases.  175	
  

A summary of the MiNs calculated for the MTs in Table 7 (see Materials and 

Methods for the table) are shown in Table 1. The shortest MiNs were for the synthesis 

of hydrogen peroxide (H2O2) (network size = 37), and the longest were for the 

synthesis of cholesteryl ester (network size = 131; Table 1). We found the greatest 

number of possible alternatives for the hexadecanoate (HDCA) synthesis and the least 180	
  

number possible for the phosphatidylserine (PS) synthesis (Table 1), suggesting that 

the HDCA synthesis is more flexible and the PS synthesis less flexible towards 

alternative formation compared to the rest of the MTs. Reactions that overlapped 

between all alternative MiNs were called high-frequency reactions (HFRs), and the 
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percentage of HFRs shows how similar or divergent a MiN is compared to the other 185	
  

MiNs. The percentage of HFRs was between 62% to 91% across the MTs (Table 1). 

In the superoxide anion (SOA) and the hydrogen peroxide (H2O2) synthesis, 62% and 

89% of the reactions were HFRs, respectively, which suggests that the alternative 

MiNs for a SOA synthesis were more divergent compared to a H2O2 synthesis.  

Table 1. Summary of MiNs found for the target metabolites comprising the various NAFLD 190	
  

phenotypes. Synthesis of a target metabolite represents a MT. For each MT, we enumerated alternative 

MiNs. The number of reactions in each MiN represents the size of the MiN. “# Alt” and “# MT HFRs” 

represent the number of alternatives and the number of overlapping reactions between all alternatives 

of a given MT, respectively. The symbol “#Phenotypic HFRs” represents the number of overlapping 

reactions form all alternatives of a set of MTs that are associated with a given phenotype.  195	
  

 

As an expanded example, a MiN from the H2O2 synthesis comprises many reactions 

from various metabolic subsystems (Fig. 1). Each MiN represents a group of active 

reactions, which are reactions that carries fluxes, within multiple metabolic 

subsystems/pathways that are required for a MT, while a pathway is a group of 200	
  

annotated reactions. In the example in Figure 1, most of the active reactions for the 

H2O2 synthesis are from the pentose phosphate pathway (PPP) and the 

glycolysis/gluconeogenesis pathway. PEA differs in that it identifies a marked 

Phenotypes Metabolic Short Min2Size #2Alt #2MT 2%2MT #2Phenotypic
Tasks2(MTs) Name #2rxns 2HFRs2 2HFRs HFRs

Oxidative)Stress Hydrogen)peroxide H2O2 37 126 33 89 16
Superoxide)anion SOA 42 144 26 62

Apoptosis)and Alanine ALA 98 39 84 86 36
Inflammation Ceramide CRM 115 8 105 91

Glutamine GLU 116 34 83 72
Lipid)droplet Cholesterol CHOL 121 60 108 89 27

Cholesteryl)ester CHOL_ES 131 237 112 85
Diacylglycerol DAG 82 232 67 82
Hexadecanoate HDCA 75 266 61 81
Phosphatidic)acid PA 83 245 65 78
Phosphatidylinositol PAIL 94 237 68 72
Phosphatidylethanolamine PE 128 7 103 80
Phosphatidylserine PS 125 6 98 78
Triacylglycerol TAG 84 257 62 74
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deregulation in a pathway as compared to MiNEA, which identifies deregulation in a 

MiN that could include multiple pathways.  205	
  

 

 

Figure 1. A minimal network (MiN) and high-frequency reactions (HFRs). A MiN 

of H2O2 synthesis is illustrated. Each box represents a different metabolic 

subsystem/pathway. The number of total reactions listed in each box represents the 210	
  

annotated reactions for that subsystem. Active reactions carry non-zero flux, and the 

number of these present in each subsystem is shown in green text. 
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# total reactions = 525
# active reactions = 9# active reactions = 9

Glycolysis/Gluconeogenesis

# total reactions = 29
# active reactions = 10# active reactions = 10
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# total reactions = 18
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# total reactions = 27
# active reactions = 1# active reactions = 1
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We further analyzed the HFRs within each phenotype and found that the most 

represented metabolic pathway in the apoptosis and inflammation (AI) phenotype was 215	
  

related to amino acid metabolism (# phenotypic HFRs=36; Table 1; Fig. 2). 

Interestingly, while the lipid droplet (LD) phenotype has many associated MTs, it 

shares 27 reactions in which 5 reactions are from the glycolysis/gluconeogenesis 

pathway (Fig. 2). These shared reactions can be constitutive candidates for the LD 

phenotypes. The HFRs forming the subsystems in Figure 2 are potential candidates 220	
  

for the key regulators of the NAFLD phenotypes.  

 

Nucleotides+Other

Glycolysis/Gluconeogenesis

Oxidative Phosphorylation

Fatty Acid Activation

Urea cycle
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Figure 2. HFRs for all the phenotypes. The number of HFRs in the various 

pathways is shown for the oxidative stress, apoptosis and inflammation, and lipid 

droplets phenotypes. See Figure 1 caption for a detailed explanation of the chart.  225	
  

 

Deregulation	
  in	
  HFRs	
  

The HFRs within each MT create a topology of reaction hubs in metabolic networks 

that can be similar to protein hubs in protein-protein interaction networks [22, 23], 

and the misregulation of these hubs in disease can explain the origin of disease 230	
  

phenotypes. Therefore, we performed an analysis of HFR deregulation to study the 

NAFLD-specific phenotypes. We identified the up- and downregulated reactions from 

mouse and human expression data (described in S1) and analyzed the HFRs for which 

the associated genes were found to be deregulated. In humans, the number of 

downregulated HFRs was higher compared to upregulated HFRs for the NS vs N and 235	
  

NS vs S across all phenotypes (Table 2). In mice, however, the NS vs N, NS vs S, and 

S vs N comparisons showed a higher number of upregulated HFRs compared to 

downregulated ones for the oxidative stress (OS) phenotype, but for the LD and AI 

phenotypes, we observed similar patterns of up- and downregulated HFRs to humans 

(Table 2).	
  240	
  

	
  

Table 2. The deregulated HFRs across all comparisons. Numbers in the table indicate the number of 

up- and downregulated HFRs. In mice, N represents the control diet (N≈AJ, N≈PWD, or N≈B6 strain 

fed the control diet). Under the DDC-supplemented diet, AJ mice tended towards NASH phenotypes 

and PWD mice tended towards steatosis phenotypes. Thus, in mice, the symbols NS stand for AJ and S 245	
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stand for the PWD, all with DDC-supplemented diet (NS≈AJ with DDC-supplemented diet; S≈PWD 

DDC-supplemented diet). 

 

 

 250	
  

We further analyzed the deregulation in reaction hubs for each MT to identify the 

most perturbed MTs in NS and S and the differences between NS and S. In humans, 

the percentage of downregulated HFRs was higher than upregulated ones for the 

synthesis of all metabolites in the NS vs N and NS vs S states, while the percentage of 

upregulated HFRs was higher than downregulated ones for the S vs N state (Fig. 3). 255	
  

There was a higher percentage of downregulated HFRs for the cholesterol (CHOL) 

and cholesteryl ester (CHOL_ES) synthesis networks in NS vs S and for the 

superoxide anion (SOA) and H2O2 synthesis networks in NS vs S (Fig. 3). This means 

that downregulated HFRs have a higher impact on NASH phenotypes.  

 260	
  

  N" "" NS" "" S" ""

    up" down" up" down" up" down"
"" OS" !! !! 7! !! 2! !! ""
N" AI" !! !! !! 9! 3! 5! N"

"" LD" !! !! 2! 3! 1! 2! ""
"" OS" !! 5! !! !! 3! 1! ""
NS" AI" 3! 5! !! !! 6! 10! NS"

"" LD" 3! 5! !! !! 4! 2! ""
"" OS" 1! !! !! 5! !! !! ""
S" AI" !! !! 1! 6! !! S"

"" LD" !! !! 1! 5! !! ""

N" "" NS" "" S" ""
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Since the mouse strains AJ and PWD show phenotype specific to NS and S, 

respectively, and the mouse strain B6 show low S and NS phenotypes after feeding 

with the DDC diet (Materials and Methods) and thus we analyzed B6 separately.  For 

mice, in NS vs N (the comparison associated to AJ) and B6 DDC vs N comparisons, 

we found that the percentage of downregulated HFRs in the SOA and H2O2 synthesis 265	
  

networks was higher than for upregulated ones (Fig. 3). This indicates synthesis 

networks of oxidative stress were found to be perturbed for AJ and B6 mice.  

Additionally, for the NS vs S in mice, an elevated percentage of upregulated HFRs 

was identified for the synthesis of the triacylglycerol (TAG), phosphatidylinositol 

(PAIL), diacylglycerol (DAG), and phosphatidic acid (PA) metabolites, and a high 270	
  

percentage of downregulated HFRs was found for the alanine (ALA) and glutamine 

(GLU) synthesis networks (Fig. 3). This is consistent with the observation of lipid 

droplet perturbation in NASH and steatosis [24], and it further suggests that the 

synthesis of TAG, PAIL, DAG, and PA are important for lipid droplet formation. 
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 275	
  

Figure 3. Quantification of up- and downregulated HFRs. Symbols ‘h’ and ‘m’ in 

comparison’s labels represent human and mouse, respectively, and ‘up’ and ‘down’ 

indicate up- and downregulation, respectively. See the legend of the Table 3 for the 

association of mouse strains to the symbols N, NS, and S. “B6 up” and “B6 down” 

represent the up- and downregulated HFRs for the B6 mouse strain comparing the 280	
  

DDC vs control diet. We quantified the percentage of up- and downregulated HFR 

using a colored heat map.  
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For the synthesis of ROS, such as H2O2, the human NS vs N case presented with a 

high percentage of downregulated HFRs, while the same case in mice presented with 285	
  

a high percentage of upregulated HFRs (Fig. 3). The reactions of the PPP associated 

with genes TKT1, TKT2, GND, and TALA were identified as downregulated HFRs 

in the NS vs N human. However, for the NS vs N mouse and B6 DDC vs N these 

reactions were identified as upregulated. PPP is known as a source of nicotinamide 

adenine dinucleotide phosphate (NADPH) that prevents oxidative stress. Thus, the 290	
  

different patterns of regulation observed for these reactions can unbalance both 

NADPH concentration and H2O2 synthesis. Interestingly it has been reported that the 

unbalance in NADPH production through PPP by either an under or over-production 

of NADPH may induce oxidative stress [25, 26]. 

 295	
  

The acetyl CoA C acetyltransferase (ACACT1rm) and phosphoglycerate mutase 

reactions of the ceramide synthesis networks were identified as downregulated HFRs 

for the NS vs S and NS vs N in humans along with the NS vs N in mice. Thus, 

perturbation in the genes associated with these reactions can affect the ceramide level 

in NASH in both mice and humans. In line with this finding, a study suggested that 300	
  

deregulated ceramide production promotes liver injury and the development of NASH 

through disruption of endoplasmic calcium homeostasis, as well as through the 

inhibition of autophagy [27].  

 

Enriched	
  MTs	
  in	
  human	
  and	
  mouse	
  based	
  on	
  deregulated	
  genes	
  305	
  

We want to identify deregulation at network level based on an enrichment analysis 

with deregulated enzymes or genes.  A Minimal network (MiN) of a metabolic task 
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(MT) contains metabolites, active reactions and their associated enzymes in order to 

fulfill the MT. To identify deregulated MTs and their associated MiNs (see Materials 

and Methods section for definitions) in steatosis and NASH, we performed Minimal 310	
  

Network Enrichment Analysis (MiNEA) (see Materials and Methods section) using 

mouse and human expression data. We identified deregulated genes (S1 text; Table 

S1-S3), and for each set of deregulated genes, we estimated the p value.  

 

Applying MiNEA to the NS vs N human case, we identified deregulated MiNs which 315	
  

corresponded to the synthesis of H2O2, PA, and TAG (Table 3; Table S4 & S5). We 

computed the percentage of significantly enriched MiNs from all generated 

alternatives of each MT and scored the deregulated MiNs using the Alternative 

Minimal Network Frequency (AMiNF), which represents the percent of MiNs with 

enrichment in deregulated genes. For the NS vs N case in humans, H2O2 synthesis had 320	
  

the highest AMiNF (AMiNF = 0.143) compared to all other deregulated MTs (Table 

3), suggesting that the deregulation of H2O2 metabolism and oxidative stress 

contributes to NASH. Indeed, a study has shown that a marked alteration of H2O2 

concentration can lead to different types of oxidative stress [25].  

 325	
  

Table 3. The significantly deregulated MTs across all comparisons based on deregulated genes. The 

numbers in the table indicate Alternative Minimal Network Frequency (AMiNF). The mouse strains 

associated with N, NS, and S are described in the legend of Table 2. For the calculation of AMiNF 

p < 0.05 was considered statistically significant.  
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 330	
  

 

When we applied MiNEA to NS vs S in humans, we found the most deregulated 

MiNs to be associated with CHOL synthesis (AMiNF =	
  0.7). Interestingly, TAG 

synthesis was also deregulated in NS vs N, suggesting that lipid droplet formation can 

be perturbed in the NASH state but through different components.  335	
  

 

In mice, we did not observe marked deregulation in NS vs N and S vs N, but we 

observed significant deregulation in NS vs S for the synthesis of ALA, GLU, 

ceramide (CRM), PS, and phosphatidylethanolamine (PE) (Table 3), suggesting that 

these MTs are subject to different perturbations between the NASH and steatosis 340	
  

states.  

 

In humans, MiNEA identified deregulation in the CHOL and TAG synthesis network, 

which are lipid droplet constituents. Similar deregulation was observed for the lipid 

droplet constituents in mice through the PS and PE synthesis networks. Thus, because 345	
  

  N" NS" S" MT"

N" !! !! !! !! N"
"" !! !! 1! ALA!! ""
"" !! !! 1! GLU! ""
"" !! !! 1! CRM! ""
NS" !! !! 0.833! PS! NS"

"" !! !! 0.714! PE! ""
"" 0.143! !! !! H2O2! ""
"" 0.016! !! !! TAG! ""

"" 0.004! !! !! PA! ""

S" !! 0.7! !! CHOL! S"

N" NS" S"

Mouse!
Hu

m
an
!

Human!

M
ou

se
!
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MiNEA was applied with information on deregulated genes, we find that in both 

humans and mice, lipid droplet formation is perturbed but through different lipid 

constituents.  

 

Enriched	
  MTs	
  in	
  humans	
  and	
  mice	
  based	
  on	
  up-­‐	
  and	
  downregulated	
  reactions	
  350	
  

To identify whether a specific up- or downregulated MiN was associated with the 

NAFLD phenotypes, we performed MiNEA while enriching for up- and 

downregulated reactions separately (S1 Text). 

 

In humans, we identified upregulated MiNs for the synthesis of PS and PE in N vs S 355	
  

(Table 4; Table S6 & S7). For the NS vs N and NS vs S cases, we identified 

downregulated MiNs associated with the synthesis of CHOL_ES, CHOL, ALA, and 

GLU (Table 5; Table S8 & S9), but none were found to be upregulated. This implies 

that in NASH the synthesis of cholesterol and the glucogenic amino acids alanine and 

glutamine are downregulated. Interestingly, in the NS vs N case, only 3% of the 360	
  

cholesterol synthesis alternatives were significantly downregulated (Table 5). 

Although it is a relatively small frequency, it can provide important leads, such as 

deregulation in metabolic tasks and hypotheses that would have been missed by the 

commonly used pathway enrichment methods, such as [3, 5]. In general, these studies 

suggested that MiNEA can identify deregulated alternative MiNs under different 365	
  

conditions. For example, previous pathway analysis methods [3, 5] lack an 

enumeration of alternatives that would have been failed to identify cholesterol 

synthesis as downregulated in NS vs N (Table 5).  
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Table 4. The significantly deregulated MTs across all comparisons based on upregulated reactions. For 370	
  

a detailed understanding, see the legend of Table 2. Numbers of the table represents AMiNF and for the 

calculation of AMiNF p value < 0.005 was used.   

 

 

In mice, the MiNs associated with the synthesis of ALA, CRM, PE, PS, CHOL_ES, 375	
  

and GLU were identified as downregulated in NS vs N (Table 5). Interestingly, in S vs 

N, only the GLU synthesis network was upregulated (Table 4). For the NS vs S case, 

we found major deregulations. Specifically, we found five upregulated networks (PA, 

TAG, DAG, PAIL, and PS) and five downregulated (ALA, GLU, CRM, PS, and PE) 

synthesis networks. Within the alternative MiNs that are used for the synthesis of PS, 380	
  

we found some networks that were upregulated and some that were downregulated. 

Since there was a higher frequency of downregulated MiNs (AMiNF = 0.5) compared 

to upregulated ones (AMiNF = 0.167), we could hypothesize that the downregulation 

of PS synthesis is an important molecular mechanism specific to NASH. Here, if we 

use pathways enrichment methods [3, 5] then we cannot associate two different 385	
  

AMiNF score for a given MT due to the lack of alternative enumeration and would 

have been failed to give a higher confidence to downregulation of PS synthesis.  

N" NS" S" MT"
N" !! !! 0.029! GLU! N"
"" !! !! 1! PA! ""
"" !! !! 1! TAG! ""
NS" !! !! 1! DAG! NS"
"" !! !! 0.979! PAIL! ""
"" !! !! 0.167! PS! ""
S" 0.429! !! !! PS! S"
"" 0.167! !! !! PE! ""

N" NS" S"

Mouse!

Hu
m
an
!

Human!
M
ou

se
!
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Table 5. The significantly deregulated MTs across all comparisons based on downregulated reactions. 

For detail understanding see the legend of Table 4. For the AMiNF calculation p < 0.005 was 390	
  

considered statistically significant.   

 

 

The cholesterol, glutamine, and alanine syntheses were found to be similarly 

deregulated in humans and mice for the NS vs N case. In contrast, the PS synthesis 395	
  

was differently deregulated between the two species (Table 4 and 5). Despite this 

opposite response in the regulation of the PS synthesis between humans and mice, it 

appears that the level of PS is perturbed in NASH. Overall this observation suggests 

that different regulations in gene expression can translate to different effects on the 

production of lipid droplet synthesis.  400	
  

  N" NS" S" MT"
"" !! 1! !! ALA! ""
"" !! 1! !! CRM! ""
N" !! 0.857! !! PE! N"
"" !! 0.833! !! PS! ""
"" !! 0.62! !! CHOL_ES! ""
"" !! 0.588! !! GLU! ""
"" 0.034! !! !! CHOL_ES! ""
"" !! !! 1! ALA! ""
NS" !! !! 1! GLU! NS"
"" !! !! 1! CRM! ""
"" !! !! 0.5! PS! ""
"" !! !! 0.429! PE! ""
"" !! 1! !! CHOL_ES! ""
S" !! 1! !! CHOL! S"

!! !! 0.128! !! ALA! !!
!! !! 0.004! !! GLU! !!

N" NS" S"

Mouse!

Hu
m
an
!

Human!

M
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!
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Integration	
  of	
  metabolite	
  concentration	
  data	
  into	
  a	
  thermodynamically	
  feasible	
  

metabolic	
  model	
  

The integration of metabolomics can change the size and structure of the MiNs for 

MTs by eliminating thermodynamically infeasible reaction directionalities. In mice, 405	
  

there are available metabolic profiles for the N, NS, and B6 cases [1]. We integrated 

these profiles into the iMM1415 [11, 13] and found that, in this case, there are not 

marked changes in the MiNs and the result in the HFRs, which means we did not 

found a marked impact on the synthesis networks of NAFLD phenotypes. A further 

sensitivity analysis can guide future metabolomics studies to target metabolites that 410	
  

have a marked thermodynamic impact on a metabolic network [28]. Thus, the 

information content of such metabolite sets can be influential and more relevant to the 

phenotypes under study.  

 

We applied MiNEA for the study of deregulated metabolic processes rather signaling 415	
  

and regulatory processed because metabolism is better characterized, as is shown with 

the increased availability of GEMS for many organisms. Despite the challenges in 

reconstructing constraint-based signaling networks, recently such reconstructions 

have started to become available. Signaling networks for the toll-like receptor (TLR) 

and epidermal growth factor receptor (EGFR) are now available, and MiNEA can be 420	
  

extended to include these networks [29, 30], meaning that MiNEA could easily be 

applied to the study of deregulation in signaling networks. 
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Materials	
  and	
  Methods	
  	
  

	
  425	
  

Microarray	
  gene	
  expression	
  analysis	
  of	
  human	
  liver	
  samples

The microarray gene expression data pertaining to the three diagnostic groups (normal 

[N], Steatosis [S], and NASH [NS]) were collected from the ArrayExpress public 

repository for microarray data under the accession number E-MEXP-3291 [14]. We 

performed an analysis of the differentially expressed genes (DEGS) and a pairwise 430	
  

comparison between diagnostic groups. To control the false discovery rate at level of 

0.05, multiple hypothesis testing was used [31]. 

 

Mice	
  phenotypes	
  after	
  feeding	
  a	
  3,5-­‐diethoxycarbonyl-­‐1,4-­‐dihydrocollidine	
  (DDC)-­‐
supplemented	
  diet	
  	
  435	
  
	
  
NASH phenotypes can be reproduced in mouse models by treatment of chronic 

intoxication of with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-supplemented 

diet [1]. Three genetically different mouse strains AJ, B6, and PWD were fed with a 

DDC-supplemented diet. Under DDC-supplemented diet, the steatosis and NASH 440	
  

phenotypes were the most obvious in the PWD and AJ strains, respectively, while for 

the B6 strain, low levels of the steatosis and NASH phenotypes were observed [1]. 

The B6 mouse strain showed less induction of the NASH phenotype than the AJ strain 

[1]. 

Association	
  of	
  mouse	
  strains	
  with	
  human	
  diagnoses	
  groups	
  	
  445	
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The normal (N) feeding group is associated with mice fed the control diet. All mice 

strains, AJ, B6 and PWD, were fed this diet and are labeled as N≈AJ, N≈PWD or 

N≈B6 to indicate the control diet and mouse strain. After feeding the DDC-

supplemented diet, AJ and PWD showed high NASH phenotypes and high steatosis 

phenotypes, respectively [1] . Thus, under the DDC-supplemented diet, the symbol 450	
  

for steatosis (S) is associated with the PWD mouse strain and the symbol for NASH 

(NS) is associated the AJ mouse strain (with DDC-supplemented diet: NS≈AJ, 

S≈PWD). Thus, NS vs N represents the AJ mouse strain treated with the DDC diet vs 

the AJ mouse strain fed the control diet, S vs N represents the PWD mouse strain 

treated with the DDC diet vs the PWD mouse strain fed the control diet, and NS vs S 455	
  

represents the AJ mouse strain treated with the DDC diet vs the PWD mouse strain 

fed the DDC diet.  	
  

 

Metabolite	
  concentration	
  and	
  RNA-­‐seq	
  gene	
  expression	
  data	
  from	
  mouse	
  liver	
  
samples	
  460	
  
Metabolite concentration data and RNA-seq gene expression data from mouse liver 

samples of the three mouse strains (AJ, B6, and PWD) measured under the control 

and DDC-supplemented diet conditions were collected from the work of Pandey et al. 

[1]. The R-package “edgeR” [32] was used to identify the differentially expressed 

genes (DEGs) using three biological replicates of each mouse strain for both the 465	
  

control and the DDC-treated conditions. Strain-wise identification of the DEGs 

between the DDC-treated and control states was performed separately for each mouse 

strain. We used the Benjamini-Hochberg procedure implemented in edgeR to control 

the false discovery rate to a level of 0.05 [31]. 

	
  470	
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Formulation	
  of	
  metabolic	
  tasks	
  (MTs)	
  based	
  on	
  steatosis	
  and	
  steatohepatitis	
  
(NASH)	
  phenotypes	
  	
  
Steatosis can occur due to the accumulation of lipid droplets in the liver, which can 

subsequently lead to NASH upon liver inflammation [33]. Lipid droplets are 

composed of many lipid metabolites [34, 35], which are summarized in Table 7. 475	
  

Reactive oxygen species (ROS), such as the superoxide anion, can also damage 

hepatic membranes and play an important role in the development of NASH [36]. To 

study these various phenotypes and their role in the various forms of liver disease, the 

metabolites associated with their various phenotypes were examined. Table 7 

summarizes the key metabolites associated with the major liver disease phenotypes: 480	
  

lipid droplets, liver inflammation, apoptosis, and oxidative stress. We investigate the 

synthesis networks of these metabolites using MiNEA, where we called the synthesis 

of a metabolite as a metabolic task (MT). 

 

Table 7: Metabolites associated with NAFLD phenotypes. This provides a summary of key metabolites 485	
  

associated with the four phenotypes and their corresponding references. Metabolites are taken from the 

mouse metabolic model of Sigurdsson and colleagues [13].	
  

Metabolites Phenotype Reference 
Diacylglycerol, phosphatidylethanolamine, cholesteryl esters, 
triacylglycerol, hexadecanoate, cholesterol, phosphatidic acid, 
phosphatidylinositol, phosphatidylserine 

Lipid droplets [34, 35, 37] 

Ceramide Inflammation [27, 37, 38] 
Alanine, glutamine, ceramide Apoptosis [39] 
Superoxide anion, hydrogen peroxide Oxidative stress [36] 
  

Minimal	
  network	
  enrichment	
  analysis	
  (MiNEA)	
  algorithm	
  	
  
The	
  cell	
  can	
  use	
  various	
  different	
  pathways	
  depending	
  on	
  the	
  current	
  state	
  and	
  490	
  

conditions	
  of	
   the	
  environment	
   to	
   fulfill	
   its	
   immediate	
  metabolic	
  needs. In order 

for MiNEA to identify deregulated alternative routes for a given MT between two 

conditions (Fig. 4), the inputs required are a metabolic model, a list of MTs, and gene 
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or protein expression data. In this work, we used a mouse GEM (iMM1415) 

reconstructed by Sigurdsson and colleagues [13], a list of MTs which are the synthesis 495	
  

of the metabolites shown in Table 7, and gene expression data of mouse and human 

liver samples [1, 14]. 

 

The MiNEA calculations begin by applying thermodynamic constraints to the model 

as described previously [11] to eliminate thermodynamically infeasible reactions, 500	
  

meaning that reactions from the metabolic network can carry fluxes only if 

thermodynamics allows [12] (Fig. 4; step 1). Then, it enumerates all the 

thermodynamically feasible minimal-size networks (MiNs) that are active for the 

given list of provided MTs (Fig. 4; step 2), and all of these MiNs are composed of 

reactions that carry non-zero flux. For this step, the following mixed-integer linear 505	
  

programming (MILP) problem is applied with the objective of minimizing the number 

of reactions that carry flux or maximizing the number of reactions that cannot carry 

flux, while enforcing that the network should be able to synthesize the metabolites 

listed in Table 1: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒     𝑧!"#,!

!!"#

!!!

        

𝑆. 𝑣 = 0    

0 ≤ 𝑣! ≤ 𝑣!"#,! ∗ 𝑍!"#,!    

𝑣!" ≥ 𝑐 ∗ 𝑉!",!"# 

RGEM is the number of reactions in a GEM and 𝑧!"#,! is a binary variable associated 510	
  

with reaction i. Reversible reactions were split into two forward reactions. 𝑉!",!"#  is 

the maximum yield to produce a metabolite associated with a MT. The parameter c is 
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generates MiNs that allow for flexibility on the yield from the MT. We chose c = 0.8 

to allow for a yield of at least 80% of the maximum yield for the associated MT.  

 515	
  

All alternative MiNs that are the minimum size (msize) for the synthesis of the 

metabolites in Table 1 are enumerated as described by Figueiredo and colleagues [40] 

(Fig. 4; step 3). One can enumerate many alternative networks larger than msize, such 

as msize+1 and msize+2. Each MiN is a subnetwork comprising a set of reactions, 

metabolites, and reaction-associated genes through gene-protein-reaction (GPR) 520	
  

association. In step 4, the deregulated genes and proteins that differ between the two 

conditions under study are identified (Fig. 4). Finally, a hypergeometric test is 

performed on the sets of deregulated genes or deregulated reactions to identify the 

deregulated MiNs (Fig. 4; Step 5).  

 525	
  

Apply mass balance and thermodynamic constraints

Minimize number of reactions 

Find alternative minimal networks (MiNs) 
that comprises active reactions 

Identified deregulated genes, proteins, reactions, and 
metabolites between two conditions 

Hypergeometric 
test

Deregulated metabolic tasks and their alternative minimal networks (MiNs)
Deregulated high frequency reactions

Step 1

Step 2

Step 3

Step 4

Step 5

Metabolic model 
(e.g. iMM1415)

 
Omics data
(e.g. Transcriptomics, proteomics)

Metabolic tasks 
(e.g. synthesis of ceramide)

Input

Output
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Figure 4. Minimal network enrichment analysis (MiNEA) overview. For each 

metabolic task (MT), MiNEA computationally enumerates MiNs that comprise active 

reactions for the MT. The inputs required for the MiNEA analysis are a genome-scale 

metabolic network (GEM), a given list of metabolic tasks (MTs), and transcriptomics 

data. Using this, alternative minimal networks (MiNs) are enumerated for MTs using 530	
  

a GEM. (steps 1–3). Transcriptomics data are used to identify differentially regulated 

genes between two conditions (step 4). To identify deregulated MTs and their 

associated MiNs, a hypergeometric test is performed with a set of deregulated genes 

(step 5). 

 535	
  

Minimal	
  network	
  significance	
  based	
  on	
  gene	
  set	
  and	
  reaction	
  set	
  (Step	
  5)	
  

The significance of the MiN based on the deregulated genes was calculated using the 

hypergeometric probability density function (P), 

𝑃 k,N,K,n =
!
!

!!!
!!!
!
!

,    (1) 

where k and K are the numbers of deregulated genes and the number of total genes in 540	
  

a given MiN, respectively, and n and N are the total number of deregulated genes and 

the total number of genes of a metabolic network, respectively. In this context, the 

term “deregulated genes” is used for both up- or downregulated genes. 

 

A reaction can have three states: upregulated, downregulated, or unregulated. The 545	
  

regulation of a reaction was determined based on its associated differentially 

expressed genes. According to this metric, a reaction was identified as upregulated or 

downregulated if the corresponding genes are only upregulated or only 
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downregulated, respectively. A reaction that is associated with a mixture of up- and 

downregulated genes is not characterized as regulated due to the inconsistency of 550	
  

gene expression. Up- and downregulated MiNs, which could contain various 

combination of up- or downregulated reactions, were identified in Step 4 of MiNEA 

(Fig. 1) based on the total number of up- or downregulated reactions, respectively. As	
  

expected, up- and downregulated MiNs comprise markedly high numbers of up- and 

downregulated reactions, respectively. 555	
  

 

The significance of a MiN based on upregulated or downregulated reactions was 

calculated using multivariate Fisher's hypergeometric distribution. This method has 

been previously used for the selection of tissue-specific elementary modes using gene 

expression data [6]. To identify significantly upregulated MiNs in a given set of 560	
  

MiNs, we selected those MiNs that contained an elevated number of upregulated 

reactions and as few as possible downregulated ones, while for the identification of 

significantly downregulated MiNs, we selected MiNs with an elevated number of 

downregulated reactions and as few as possible upregulated ones.  

	
  565	
  

Assume R and T are the total numbers of reactions in a GEM and a MiN, respectively, 

which can be decomposed as follows:  

	
  

R  =  Rup  +  Rdown  +  Rno
T  =  Tup  +  Tdown  +  Tno

   (2) 

	
  570	
  

Rup, Rdown, and Rno represent the number of upregulated, downregulated, and 

unregulated reactions in a GEM, respectively. In the context of a MiN, T is the total 
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number of reactions, and Tup, Tdown, and Tno are the number of upregulated, 

downregulated, and unregulated reactions, respectively.  

To consider a MiN as upregulated, we need to ensure that the pair (Tup, Tdown) in the 575	
  

MiN of T reactions cannot arise by chance in the context of the whole network. To 

obtain a better upregulation by chance, the p value was computed using equation (3). 

Note that an equal or better outcome than the pair (Tup, Tdown) satisfies two conditions: 

(i) the number of downregulated reactions is smaller than or equal to Tdown, and (ii) 

the number of upregulated reactions is greater than or equal to Tup, whereas the 580	
  

number of reactions in the MiN remains unchanged.  

 

p-­‐value  =  

!up
!

!down
!

!no
!!!!!

   !!
𝑖 + 𝑗 ≤ 𝑇

!down
j=!

min !up,T
i=Tup

    (3) 

	
  

We can compute the p value for downregulated reactions the same way as for the 585	
  

upregulated reaction simply by changing up with down and down with up in the 

above equation. 

 

Deregulated	
  percentage	
  (DRP)	
  

We calculated the deregulated percentage (DRP) for each MiN, which indicates the 590	
  

percentage of up- or downregulated genes in a MiN. For example, if a given MiN 

comprises 20 genes, and 5 genes of the MiN are deregulated, the then DRP is equal to 

0.4. Since the active reactions in a MiN were classified as either up- or 
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downregulated, we calculated both upregulated percentage (UPR) and downregulated 

percentage (DnRP) for each MiN. 595	
  

 

Alternative	
  minimal	
  network	
  frequency	
  (AMiNF)	
  

To extend the degree of confidence of the results from MiNEA, we introduced the 

alternative minimal network frequency (AMiNF) metric that determines the 

significantly deregulated percentage of MiNs for a given MT. If all the alternative 600	
  

MiNs for a MT are significantly deregulated, AMiNF takes the value 1. The AMiNF 

is 0 when none of the MiNs for a MT are significantly deregulated.  

 

MiNEA	
  implementation	
  
MiNEA was implemented using Matlab r2016a (The Mathworks, Natick, MA, USA), 605	
  

and MILP problems were solved using CPLEX solver (ILOG, Sunnyvale, CA, USA). 

The MILP gaps for all problems were converged to less than 0.05% in less than 2,400 

s. We also plan to make the MiNEA algorithm available as a tool for distribution to 

the community.  

 610	
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Conclusions	
  	
  

In contrast to graph-based methods (GBM) and pathway enrichment analysis (PEA), 

the methodology introduced here (MiNEA) expands the notion of pathway into in a 

set of mass balanced subnetworks that can be used to understand the carbon, energy, 

and redox flows from precursor metabolites to target metabolites and complex 615	
  

metabolic tasks. One of the main advantages of MiNEA compared to PEA is that 

MiNEA attempts an enumeration of alternative minimal networks for each metabolic 

task (MT), which helps us understand and study the MT flexibility. Although a large 

number of alternative enumerations for a complex metabolic network can be time-

consuming, once the enumeration is completed, MiNEA applies a statistical analysis 620	
  

that is fast and extracts additional information, such as pertaining to the deregulation 

of MTs or the deregulation in reaction hubs. As an example of the power of MiNEA, 

we identified deregulation in key metabolic network of the ceramide and hydrogen 

peroxide synthesis, of NASH in both humans and mice. We also identified similar 

deregulation in NASH for the cholesterol synthesis networks in humans and mice, and 625	
  

we found opposite deregulation for the phosphatidylserine synthesis network between 

humans and mice. MiNEA is highly applicable for the study of context- or condition-

specific metabolism because using this one can identify synthesis networks for any 

given target metabolite and further can employ condition-specific transcriptomics, 

proteomics, and metabolomics data.  630	
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Supplementary	
  Tables	
  635	
  

Table S1. Differentially expressed genes for human and mouse expression data.  

Table S2. Upregulated reactions for human and mouse data. 

Table S3. Downregulated reactions for human and mouse data. 

Table S4. Minimal network enrichment analysis based on differentially expressed 

genes. Description of the table heading is illustrated in ‘Symbol’ sheet of the excel 640	
  

file. Please see the Symbol sheet for the detail description for the tables: S5-S9.    

Table S5. Minimal network enrichment analysis based on upregulated reactions. 

Table S6. Minimal network enrichment analysis based on downregulated reactions. 

Table S7. Marked deregulated minimal networks selected based on Table S4.  

Table S8. Marked deregulated minimal networks selected based on Table S5.  645	
  

Table S9. Marked deregulated minimal networks selected based on Table S6. 
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  675	
  
	
  
Comparison	
  of	
  human	
  and	
  mouse	
  genome-­‐scale	
  metabolic	
  models	
  
 
Mouse genome-scale metabolic model, iMM1415 [13] was reconstructed based on a 

human genome-scale metabolic model (Recon 1, [41]). Sigurdsson and collogues 680	
  

found that the mammalian organism with the highest number of genes homologous to 

Recon 1 genes was the mouse (Mus musculus) (1,415 genes, 97%). We compared 

iMM1415 and Recon1 and found that the iMM1415 shares 98% of reactions with 

Recon1 and in the reaming 2 % reactions more than 1.5 % reactions were associated 

to the extracellular transport mechanism. This suggests that Recon1 and iMM1415 685	
  

have very similar metabolism. 

	
  
	
  
Identification	
  and	
  analysis	
  of	
  deregulated	
  genes	
  and	
  reactions	
  in	
  

human	
  and	
  mouse	
  liver	
  samples	
  690	
  

	
  
To understand the nonalcoholic fatty liver disease (NAFLD) and the difference of the 

disease in mouse and human we collected human expression data form the three 

diagnosis groups: normal (N), steatosis (S), and nonalcoholic steatohepatitis (NS), and 

mouse expression data form the control and DDC-supplement diet conditions for the 695	
  

three mouse strains: AJ, B6 and PWD (Materials and Methods). These data were 

referred as human expression data and mouse expression data throughout this section. 
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Differential	
  expressed	
  genes	
  in	
  human	
  liver	
  samples	
  700	
  

To understand the NAFLD physiology we analyzed the differentially expressed genes 

(DEGs) in the human expression data. Out of the 1415 metabolic genes in iMM1415 

[13], we identified 29, 484 and 363 DEGs in S vs N, NS vs S, and NS vs N, 

respectively (Fig. S1 upper panel and Table S1). Only 29 DEGs between S vs N may 

explain that the metabolic state was very similar between normal and steatosis. The 705	
  

total number of DEGs between NS vs N and NS vs S were much higher than S vs N, 

and thus suggest a more pronounced alteration of the metabolic state of nonalcoholic 

steatohepatitis compared to steatosis and normal. Furthermore, the number of 

downregulated genes is greater than the number of upregulated genes in exclusively 

NS vs N and NS vs S (Fig. S1), suggesting that, in human NASH, the perturbation 710	
  

leading to the metabolic state that characterizes it, is reached by downregulated genes. 

	
  

Differential	
  expressed	
  genes	
  in	
  mouse	
  liver	
  samples	
  

We analyzed the mouse expression data for DEGs as described in the material and 

methods section. Out of the 1415 metabolic genes in iMM1415, the total number of 715	
  

DEGs between control and DDC-supplemented diet was similar across all strains with 

247, 248 and 221 for AJ, B6 and PWD, respectively (Fig. S2 lower panel). Here, AJ 

and PWD are associated with NS vs N and S vs N, respectively (see materials and 

methods). Many up- and down-regulated genes were strain-specific. The number of 

up- and down-regulated strain-specific gene pairs for AJ, B6, and PWD were (48, 20), 720	
  

(33, 29), and (39, 62), respectively (Fig. S1 lower panel and Table S1). The number of 
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up-regulated genes was greater than the number of down-regulated genes for the AJ 

strain, while for the PWD strain the opposite was true. Numbers of up- and down-

regulated genes were very similar for the B6 strain. Interestingly, the observed 

differences qualitatively correlate with the strains’ phenotypes: steatohepatitis 725	
  

phenotypes were observed high, low, and unspecific for the AJ, B6, and PWD mouse 

strains, respectively [1]. 

 

We identified deregulated genes form the AJ under the DDC-supplemented diet vs 

PWD under DDC-supplemented diet and this is associated with NS vs S (see 730	
  

materials and methods). For this comparison we identified 191 and 100 up- and down-

regulated genes, respectively (Table S1).  

 

Up-­‐	
  and	
  downregulated	
  reactions	
  in	
  human	
  and	
  mouse	
  

A reaction is marked as down regulated if genes associated to the reaction is down-735	
  

regulated and if genes associated to the reaction is upregulated then the reaction is 

called as upregulated. If a reaction is associated to genes with mix-regulation (up- and 

down-regulation) then the reaction is not marked with up- or down-regulated. 

Regulations of reactions are computed for the human expression data and mouse 

expression data (Fig. S2).  740	
  

Only for NS vs S, the number of down-regulated reactions was higher than the 

number of up-regulated reactions (Fig. S2 upper panel), and a similar trend was 

observed for the number of up- and down-regulated genes (Fig. S1 upper panel and 

Tables S2-S3). The number of reactions up- and down-regulated was similar for NS 

vs N, but the number of down-regulated genes was higher than the number of 745	
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upregulated genes (Fig. S1 and S2 upper panels). For S vs N, the number of down-

regulated reactions was higher than the number of up-regulated reactions; however, 

the numbers of up- and down-regulated genes for these conditions were similar (Fig. 

S1 and S2 upper panels). This observation indicates that the reaction regulation (RR) 

is not always in agreement with the gene regulation, which results from the 750	
  

dependency on the gene association set rather than a single gene. 

	
  

For the AJ and B6 mouse strains, we found that the number of upregulated reactions 

was higher than the number of downregulated reactions, whereas for the PWD mouse 

strain the inverse was observed (Fig. S2 lower panel). For AJ and PWD, the gene 755	
  

regulation followed the same trend for reaction regulation, whereas for B6 the 

numbers of up- and down-regulated genes and reactions remained comparable (Fig. 

S1).  

To represents as the human NS vs S we compared mice that have shown high 

nonalcoholic steatohepatitis (NS) phenotypes (AJ mice fed with the DDC-760	
  

supplemented diet) to mice that have shown high steatosis (S) phenotypes (PWD mice 

fed with DDC supplemented diet). For the NS vs S in mice (see materials and 

methods; AJ DDC vs PWD DDC) we identified 459 and 191 up- and down-regulated 

reactions, respectively (Table S 2-S3).  

 765	
  

Supplementary	
  Figures	
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Figure S1. Venn diagram of differentially expressed genes of human and mouse liver 

samples. Upper and lower panels represent human and mouse, respectively.  
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 770	
  

Figure S2. Venn diagram of up- and downregulated reactions of the iMM1415 in 

human and mouse liver samples. The reaction regulation metric was used to identify 

up- and downregulated reactions.	
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