Two-fluid plasma model for radial Langmuir probes as a converging nozzle
with sonic choked flow, and sonic passage to supersonic flow
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Using the Lambert function, Guittienne, Howling and Furno [Phys. Plasmas 25, 093519 (2018)] derived two-
fluid solutions for radial Langmuir probes in collisionless and isothermal plasma. In this Brief Communication,
we point out the close analogy with classical compressible fluid dynamics, where the simultaneous flows of
the ion and electron fluids experience equal and opposite electrostatic body forces in the inward radial flow
of the plasma, which behaves as a converging nozzle. Hence, the assumed boundary condition of sonic flow of
the repelled species at the probe is explained as choked flow. The sonic passage from subsonic to supersonic
flow of the attracted species at the sonic radius is also interpreted using classical fluid dynamics. Moreover,
the Lambert function can provide a general solution for one-dimensional, isothermal compressible fluids, with

several applications.

Langmuir probes are one of the most fundamental di-
agnostics of plasma physics.!™* A recent paper® presented
a mathematical treatment for radial Langmuir probes
in collisionless, isothermal plasma by using the Lambert
function.® In this Brief Communication, it is shown that
the Lambert function is in fact a general solution for one-
dimensional, isothermal compressible fluid equations in
classical fluid dynamics. The analogy with fluid dynam-
ics gives physical insight into the Lambert solution, and
confirms the intuitive assumptions for the fluid boundary
conditions in [5].

An analogy with classical fluid dynamics could be ex-
pected because [5] solves the Euler compressible fluid
equations for mass continuity and momentum conser-
vation, along with the ideal gas law, treating ions and
electrons as two separate fluids. To illustrate this, Fig.
1(b) for radial probes in [5] is redrawn here in Fig. 1 us-
ing fluid dynamics terminology: The equivalence of the
terms in classical fluid dynamics and in [5] is given in Ta-
ble I, where the textbooks by Shapiro,” and Landau and
Lifshitz,® are followed throughout. It can be seen that
the flow towards the radial probe (cylindrical or spheri-
cal) is equivalent to one-dimensional (1D) radial flow in
a converging nozzle.” The 1D Cartesian case for plane
probes®? can be treated as flow in a straight tube,” but
is of less physical relevance to real Langmuir probes and
is not considered further here.

The ions and electrons are collected at the probe’s con-
ducting surface, hence the probe is effectively a vacuum
boundary for loss of the charged fluids. The neutrals
which result from ion neutralization return to the neu-
tral gas background, but do not interact with the ions
or electrons in this collisionless approximation, and are
not considered further. The ion and electron fluids both
flow towards the probe according to the combined forces
of their pressure gradient and the electric field; the resul-
tant flow of the electron fluid is against the electrostatic
force for the case shown in Fig. 1.

The properties of the non-perturbed equilibrium
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FIG. 1. (a) A cross-sectional segment of the cylindrical probe
plasma geometry, showing the ion and electron flows, along x,
from the unperturbed bulk plasma (equal densities ng, plasma
potential Vp) to the probe conducting surface, where they
are collected (n; = me = 0, probe potential V,). (b) The
same plasma segment represented as a converging nozzle for
one-dimensional compressible flow”® of the ion and electron
fluids with Mach number M, and M. respectively. The flows
begin at the stagnation plane and end in an effective vacuum
boundary caused by loss of the ion and electron fluids at the
probe. The charged fluids experience an equal and opposite
Coulomb body force in the electric field E, shown for V, <
Vo. For this case, the electron fluid undergoes sonic endpoint
choking at the probe (M. = 1), and the ion fluid accelerates
in the electric field via sonic passage to supersonic speed.

plasma define a stagnation plane’ because the flow ve-
locity towards the probe, from a large distance, tends to
zero, by conservation of flux.® Hence, the ion and elec-
tron fluids both enter the nozzle with subsonic velocity.
There are no sidewalls, so no surface forces” (i.e. no wall
friction), and viscosity is neglected. The flow is assumed
to be collisionless in this model,® therefore the only exter-
nal force acting on each flow is the electrostatic Coulomb
body force which is equal and opposite for the ion and



Variable Name | Fluids™® Ref. 5 Comment
incremental dist. dx —dr +ve along flow
pressure p nqT T in volts® 2
mass density o nm particle mass m
mass flux density | j = pu nmu flow speed u
(sound speed)? | ¢ =p/p |ud, = qT/m| isothermal
(Mach no.)? M? U u? JuZ,
incremental area |dA/A < 0| —dr/r converging
body force/volume F +ngkE electrostatic

TABLE I. Equivalence of one-dimensional compressible fluid
dynamic variables”® with the variables of [5], which apply to
the ion fluid and the electron fluid.

electron fluids. The electrostatic body force per unit vol-
ume is tngFE = $nq%, where the electric field E is
the negative gradient of the electric potential V. The
electric field is calculated self-consistently using Poisson’s
equation.® Body forces are usually neglected in compress-
ible fluid dynamics because only gravity acts on neutral
gases,” although an electromagnetic body force, due to
plasma carrying current in a magnetic field, was intro-
duced by Resler and Sears.!011

The Euler equations for the electron and ion fluid flows
in steady, 1D radial, isothermal and collisionless flow to
a biased cylindrical probe are the conservation of mass,
2wrnmu = const., and the conservation of momentum,5
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where U = u?/u?,. In the term for ¥, the top sign (—)
corresponds to electrons, and the bottom sign (4) to ions.
This equation, (28) in [5], was directly integrated, and
by eliminating n using mass conservation, the Lambert
function solutions (33) were derived immediately.

However, for Euler equations generally, the momen-

tum equation is not necessarily integrable, so the clas-
sical fluid dynamics solution proceeds via differential
equations.” Following that procedure here, the square of
the mass conservation equation is first differentiated to
give

=0, (1)
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then the differential term for In(n) is eliminated from (1)
to give
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This is a new intermediate step for the solution in [5].
As before, the top sign (now +) corresponds to electrons,
and the bottom sign (now —) to ions.

In classical fluid dynamics, the Euler equations can be
expressed as differential working equations,” for example,
for the dependence of the Mach number, M, on the duct
area A and retarding body force per unit volume F, as
follows:

dM? 2M? dlnA F
= - +—=1, (4)
dx 1— M2 dx D

which is greatly simplified in this case of isothermal flow.
Isothermal flow effectively assumes infinite thermal con-
ductivity because heat conduction via sidewalls is ex-
cluded here. Using Table I, it is clear that (3) is iden-
tical to the differential working equation (4). Hence the
approach in [5] can be understood using classical fluid
dynamics.

Equation (3) can be conveniently rearranged and in-
tegrated, thus rejoining the direct integration method in
[5], to give:

2V
U—-InU =In(r?) £ - +est, (5)

where cst is a constant of integration. In fluid dynamics
textbooks, this is the point where analytical solutions
end.”11:13:14 However, raising (5) to the exponential and
rearranging gives

1
—Ue YV = 3 oF T —est, (6)
which has the solution®
1 .
U=-W [_ﬂeﬂFQTV —cst] ’ (7)

where W denotes the Lambert function® defined by a =
ze® & z = Wlal.

A more general solution can be found from the fluid
equations: Provided that the only variables are the duct
area A, and body forces F'(x) per unit volume, rearrange-
ment and integration of (4) similarly yields

M2 — —W |:_Ii2ef(2F/p)d;E:| ' 8)

This shows that the Lambert function can be used to give
a general solution to the Fuler equations for 1D isother-
mal, compressible fluids.

The intermediate equation (3) and the differential
working equation (4) can be exploited to justify the
intuited boundary conditions in [5] as follows:

First, consider the special case of a field-free situa-
tion (F and +ngE = 0) where the probe potential is
maintained equal to the plasma potential, V, = V}, so
there is no electric field to influence ions and electrons.
Charged particles are neutralized on contact with the
probe, which, therefore, is effectively a vacuum bound-
ary for the flows. The resulting pressure gradients drive
ion and electron flows from the equilibrium plasma to the
probe sink. The boundary condition at the probe can be
elucidated using fluid dynamics in two complementary
ways:

1. The flows are initially subsonic because they en-
ter from the stagnation plane, so the denominator
(1 — M?) in (4) is positive, as well as the numera-

tor, —424 — 1 for the converging nozzle. There-
) d2’E r?
dM

fore #— > 0, and the Mach number increases




continually as the fluid flows towards the probe.
The flow reaches a maximum limiting condition of
sonic speed M = 1 at the probe surface because, if

2 .
M? > 1 were to occur, 22 would change sign.”

dz
2. The fluids empty into the probe vacuum bound-
ary at the highest possible mass flow rate: From
the mass flux density j = pu and the momen-
tum equation with % =0, a general result is that
% = p(1—M?), hence the maximum mass flux den-
sity occurs at the sonic speed.® Because the mass
flow rate is conserved, this maximum in mass flux
density must occur at the narrowest part of the
converging nozzle, i.e. at the probe.

This sonic upper limit of flow speed and mass flux
density at the exit of the converging nozzle is called
sonic endpoint choking.'® The fluid pressure cannot drop
to zero without the fluid accelerating to sonic velocity;
a shock wave forms at the probe resulting in a pressure
discontinuity from p, to zero (Fig. 1(b)). For isothermal
conditions, the sonic speed is the same as the thermal

velocity wuyn, = \/g, the root mean square velocity in
any single direction. Hence the maximum flux density
is ngutn, where n, is the number density just before
the collisionless shock at the probe surface. This sonic
boundary condition was proven in [5], for planar probes,
by requiring continuity between the branches of the
Lambert function for repelled species (W) and attracted
species (W_1) in the limit V, = V. Note that the flux
density ngutn in this fluid model is different from the

classical kinetic theory flux density %naf/ = \/%nauth
(where v = % is the mean thermal velocity), as

discussed in [5].

Now consider the repelled species, for example, elec-
trons when the probe voltage V, < V; in Fig. 2(a).
The numerator in (3) remains positive, hence the repelled
species fluid always undergoes sonic endpoint choking.”
Consequently, the flux density of the repelled species at
the probe is always ngusn, which is consistent with the
flux boundary condition intuited in [5]. The constant
est in (5)—(7), for a given probe voltage V,, is therefore
found by using {U,r,V} = {1, R,, V,} for the boundary
condition at the probe. The radial profile of the repelled
species fluid velocity in Fig. 2 is the same as the subsonic
curve in Fig. 8.7(c) of [7], and the solution for the square
of the fluid velocity normalized to the sonic speed, for
the repelled species, is:

U=M?=-W,
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where Wy corresponds to the subsonic branch of the
Lambert solution.®
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FIG. 2. Radial profiles of the fluid velocity for repelled and
attracted species taken from Fig. 9 of [5]. Probe voltage (a)
Vo =15V, and (b) Vo = 25 V. Probe radius 0.05 mm and
plasma potential Vo = 20 V. All velocities tend to zero at
infinity.

Finally, consider the attracted species, for example,
ions when the probe voltage V, < Vj in Fig. 2(a). Start-
ing from the field-free case V, = Vj, the ions will also
experience sonic endpoint choking at the probe.? How-
ever, as the probe voltage is lowered, there comes a point
when the numerator of (3) becomes zero at R, when
[%] R = Rl,,' For all probe voltages below this value
Vs, there is a critical radius within the plasma where the
numerator and denominator are both zero and simultane-
ously change sign, so that % remains positive. Hence
the attracted species fluid continues to accelerate, in the
electric field, to supersonic speeds as the fluid approaches
the probe. This is called sonic passage.” At this critical
radius, M =1 and [%}Rs = Rls, where Rg is the sonic
radius, as shown in Fig. 2. The radial profile of the at-
tracted species fluid velocity is the same as the critical
curve in Fig. 8.7(e) of [7]. The constant est in (5)—(7)
is found using {U,r,V} = {1, Rs, Vs}, so that the solu-
tion for the square of the fluid velocity normalized to the
sonic speed, for the attracted species, is:

R% —avs—v) _
U=M?=-W, fr—ge T o (10)
where k& = 0 corresponds to the subsonic branch of
the Lambert solution, and & = —1 corresponds to the

supersonic branch, with continuity at the sonic radius in
Fig. 2.

Thus, the solutions for the repelled and attracted
species, (37) in [5], are self-consistent with a classical
fluid dynamic treatment, (9) and (10). Unfortunately,
the fluid dynamics approach does not appear to give
more information about the sonic passage than already
deduced in Fig. 8 and Appendix B.1 of [5]. Therefore,



the sonic radius Rg and sonic potential Vs remain as the
final parameters requiring numerical solution, involving
Poisson’s equation.®

Previous examples of choked flow for 1D Euler equa-
tions describing plasma, include single-fluid channel flow
for MHD generators and plasma accelerators,'®!! and
electron flow in field-effect transistors.!® The Parker
model for the solar wind involves single-fluid isothermal
flow, where diverging-nozzle expansion is retarded by the
sun’s gravity; this flow also undergoes sonic passage to
supersonic expansion.' Collisionless bow shock occurs
against planetary magnetospheres, analogous to collision-
less shock at the probe surface in Fig. 1. The analytical
expression for the gravitational force means that the fluid
equations (4) and (8) for the solar wind model have an
exact Lambert function solution.'”

To summarize, isothermal collisionless plasma sur-
rounding a radial Langmuir probe has been treated as
a converging nozzle for ion and electron fluids affected
by electrostatic body forces: The repelled fluid under-
goes sonic endpoint choking at the probe surface; the
attracted fluid undergoes sonic passage at the sonic ra-
dius. This fluid dynamic approach is consistent with the
boundary conditions in [5], and provides physical insight
into the Lambert function solution. Furthermore, this
function can provide a general solution for 1D, isother-
mal compressible fluids, with additional applications in
plasma physics'® such as solar wind and channel flow, as
well as Langmuir probes.
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