Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging

Super-resolution microscopies based on the localization of single molecules have been widely adopted due to their demonstrated performance and their accessibility resulting from open software and simple hardware. The PAINT method for localization microscopy offers improved resolution over photoswitching methods, since it is less prone to sparse sampling of structures and provides higher localization precision. Here, we show that waveguides enable increased throughput and data quality for PAINT, by generating a highly uniform similar to 100 x 2000 mu m(2) area evanescent field for TIRF illumination. To achieve this, we designed and fabricated waveguides optimized for efficient light coupling and propagation, incorporating a carefully engineered input facet and taper. We also developed a stable, low-cost microscope and 3D-printable waveguide chip holder for easy alignment and imaging. We demonstrate the capabilities of our open platform by using DNA-PAINT to image multiple whole cells or hundreds of origami structures in a single field of view.

Published in:
Nature Communications, 10, 1267
Mar 20 2019

Note: The status of this file is: Anyone

 Record created 2019-03-30, last modified 2020-04-20

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)