Isogeometric analysis with C^1 hierarchical functions on planar two-patch geometries

Cesare Bracco, Carlotta Giannelli, Mario Kapl, Rafael Vázquez
Isogeometric analysis with C^1 hierarchical functions on planar two-patch geometries

Cesare Bracco · Carlotta Giannelli · Mario Kapl · Rafael Vázquez

Received: date / Accepted: date

Abstract Adaptive isogeometric methods for the solution of partial differential equations rely on the construction of locally refinable spline spaces. A simple and efficient way to obtain these spaces is to apply the multi-level construction of hierarchical splines, that can be used on single-patch domains or in multi-patch domains with C^0 continuity across the patch interfaces. Due to the benefits of higher continuity in isogeometric methods, recent works investigated the construction of spline spaces with global C^1 continuity on two or more patches. In this paper, we show how these approaches can be combined with the hierarchical construction to obtain global C^1 continuous hierarchical splines on two-patch domains. A selection of numerical examples is presented to highlight the features and effectiveness of the construction.

1 Introduction

Isogeometric Analysis (IgA) is a framework for numerically solving partial differential equations (PDEs), see [2,11,25], by using the same (spline) function space for describing the geometry (i.e. the computational domain) and for representing the solution of the considered PDE. One of the strong points of IgA compared to finite elements is the possibility to easily construct C^1 spline spaces, and to use them for solving fourth order PDEs by applying a Galerkin discretization to their variational formulation. Examples of fourth order
problems with practical relevance (in the frame of IgA) are e.g. the biharmonic equation [10, 26, 44], the Kirchhoff-Love shells [1, 3, 33, 34] and the Cahn-Hilliard equation [18, 19, 36].

Adaptive isogeometric methods can be developed by combining the IgA framework with spline spaces that have local refinement capabilities. Hierarchical B-splines [35, 49] and truncated hierarchical B-splines [16, 17] are probably the adaptive spline technologies that have been studied more in detail in the adaptive IgA framework [7, 8, 14]. Their multi-level structure makes them easy to implement, with the evaluation of basis functions obtained via a recursive use of two-level relation due to nestedness of levels [12, 15, 23]. Hierarchical B-splines have been successfully applied for the adaptive discretization of fourth order PDEs, and in particular for phase-field models used in the simulation of brittle fracture [22, 23] or tumor growth [37].

While the construction of C^1 spaces is trivial in a single-patch domain, either using B-splines or hierarchical B-splines, the same is not true for general multi-patch domains. The construction of C^1 spline spaces over multi-patch domains is based on the concept of geometric continuity [24, 42], which is a well-known framework in computer-aided design (CAD) for the design of smooth multi-patch surfaces. The core idea is to employ the fact that an isogeometric function is C^1-smooth if and only if the associated multi-patch graph surface is G^1-smooth [21], i.e., it is geometrically continuous of order 1.

In the last few years there has been an increasing effort to provide methods for the construction of C^1 isogeometric spline spaces over general multi-patch domains. The existing methods for planar domains can be roughly classified into two groups depending on the used parameterization for the multi-patch domain. The first approach relies on a multi-patch parameterization which is C^1-smooth everywhere except in the neighborhood of extraordinary vertices (i.e. vertices with valencies different to four), where the parameterization is singular, see e.g. [41, 46, 47], or consists of a special construction, see e.g. [31, 32, 40]. The methods [41, 46, 47] use a singular parameterization with patches in the vicinity of an extraordinary vertex, which belong to a specific class of degenerate (Bézier) patches introduced in [43], and that allow, despite having singularities, the design of globally C^1 isogeometric spaces. The techniques [31, 32, 40] are based on G^1 multi-patch surface constructions, where the obtained surface in the neighborhood of an extraordinary vertex consists of patches of slightly higher degree [31, 40] and is generated by means of a particular subdivision scheme [32]. As a special case of the first approach can be seen the constructions in [39, 45], that employ a polar framework to generate C^1 spline spaces.

The second approach, on which we will focus, uses a particular class of regular C^0 multi-patch parameterizations, called analysis-suitable G^1 multi-patch parameterization [10]. The class of analysis-suitable G^1 multi-patch geometries characterizes the regular C^0 multi-patch parameterizations that allow the design of C^1 isogeometric spline spaces with optimal approximation properties, see [10, 28], and includes for instance the subclass of bilinear multi-patch parameterizations [4, 26, 30]. An algorithm for the construction of analysis-suitable G^1 parameterizations for complex multi-patch domains was presented in [28]. The main idea of this approach is to analyze the entire space of C^1 isogeometric functions over the given multi-patch geometry to generate a basis of this space or of a suitable subspace. While the methods in [4, 26, 30] are mainly restricted to (mapped) bilinear multi-patch parameterizations, the techniques [5, 27, 29, 38] can also deal with more general multi-patch geometries. An alternative but related approach is the construction [9] for general C^0 multi-patch parameterizations, which increases the degree of the constructed spline functions in the neighborhood of the common interfaces to obtain C^1 isogeometric spaces with good approximation properties.
In this work we extend the second approach from above for the construction of hierarchical C^1 isogeometric spaces on analysis-suitable G^1 geometries, using the abstract framework for the definition of hierarchical splines detailed in [17]. Focusing on the multi-patch construction [29] but restricted to the case of two patches, we show that these isogeometric C^1 basis functions satisfy the required properties given in [17], and in particular that they are locally linearly independent (see Section 3.1 for details).

Apart from the construction of the hierarchical C^1 spline space, in this paper we also introduce an explicit expression for the relation between C^1 basis functions of two consecutive levels, expressing coarse basis functions as linear combinations of fine basis functions. This relation is exploited for the implementation of hierarchical splines as in [15,23]. The nice properties of hierarchical C^1 spaces for their application with adaptive methods is demonstrated in a series of numerical tests, that are run with the help of the Matlab/Octave code GeoPDEs [15,48].

The remainder of the paper is organized as follows. Section 2 recalls the concept of analysis-suitable G^1 two-patch geometries and briefly presents the C^1 isogeometric spline space [29] over this class of parameterizations. In Section 3, we develop the (theoretical) framework to employ this space to construct C^1 hierarchical isogeometric spline spaces, where some of the technical details of a proof are given in Appendix A. The generated hierarchical spaces are then used in Section 4 to numerically solve the laplacian and bilaplacian equations on two-patch geometries, where the numerical results demonstrate the potential of our C^1 hierarchical construction for applications in IgA. The construction of the non-trivial analysis-suitable G^1 two-patch parameterization used in two examples is described in detail in Appendix B. Finally, the concluding remarks can be found in Section 5. For easiness of reading, we include at the end of the paper a list of symbols with the main notation used in this work.

2 C^1 isogeometric spaces on two-patch geometries

In this section, we introduce the specific class of two-patch geometries and the C^1 isogeometric spaces which will be used throughout the paper.

2.1 Analysis-suitable G^1 two-patch geometries

We present a particular class of planar two-patch geometries, called analysis-suitable G^1 two-patch geometries, which was introduced in [10]. This class is of importance since it comprises exactly those two-patch geometries which are suitable for the construction of C^1 isogeometric spaces with optimal approximation properties, see [10,28]. The most prominent member is the subclass of bilinear two-patch parameterizations, but it was demonstrated in [28] that the class is much wider and allows the design of generic planar two-patch domains.

Let $k, p, r \in \mathbb{N}$ with degree $p \geq 3$ and regularity $1 \leq r \leq p - 2$. Let us also introduce the ordered set of internal breakpoints $T = \{\tau_1, \tau_2, \ldots, \tau_k\}$, with $0 < \tau_i < \tau_{i+1} < 1$ for all $1 \leq i \leq k$. We denote by S^r_p, the univariate spline space in $[0,1]$ with respect to the open knot vector

$$S^r_p = \{ 0, \ldots, 0, \tau_1, \ldots, \tau_1, \tau_2, \ldots, \tau_2, \ldots, \tau_k, \ldots, \tau_k, 1, \ldots, 1 \}, \hspace{1cm} (1)$$
and let \(N_{p_i}^r, i \in I = \{0, \ldots, p + k(p-r)\} \), be the associated B-splines. Note that the parameter \(r \) specifies the resulting \(C^r \)-continuity of the spline space \(S_p^r \). We will also make use of the subspaces of higher regularity and lower degree, respectively \(S_p^{r+1} \) and \(S_p^{r-1} \), defined from the same internal breakpoints, and we will use an analogous notation for their basis functions. Furthermore, we denote by \(n, n_0 \) and \(n_1 \) the dimensions of the spline spaces \(S_p^r, S_p^{r+1} \) and \(S_p^{r-1} \), respectively, which are given by

\[
n = p + 1 + k(p-r), \quad n_0 = p + 1 + k(p-r-1) \quad \text{and} \quad n_1 = p + k(p-r-1),
\]

and, analogously to \(I \), we introduce the index sets

\[
I_0 = \{0, \ldots, n_0 - 1\}, \quad I_1 = \{0, \ldots, n_1 - 1\},
\]
corresponding to basis functions in \(S_p^{r+1} \) and \(S_p^{r-1} \), respectively.

Let \(F^{(L)}, F^{(R)} \in (S_p^r \otimes S_p^r)^2 \) be two regular spline parameterizations, whose images \(F^{(L)}([0,1]^2) \) and \(F^{(R)}([0,1]^2) \) define the two quadrilateral patches \(\Omega^{(L)} \) and \(\Omega^{(R)} \) via \(F^{(S)}([0,1]^2) = \Omega^{(S)}, S \in \{L, R\} \). The regular, bijective mapping \(F^{(S)} : [0,1]^2 \to \Omega^{(S)}, S \in \{L, R\} \), is called geometry mapping, and possesses a spline representation

\[
F^{(S)}(\xi_1, \xi_2) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} c_{i,j}^{(S)} N_{i,p}^r(\xi_1) N_{j,p}^r(\xi_2), \quad c_{i,j}^{(S)} \in \mathbb{R}^2.
\]

We assume that the two patches \(\Omega^{(L)} \) and \(\Omega^{(R)} \) form a planar two-patch domain \(\Omega = \Omega^{(L)} \cup \Omega^{(R)} \), which share one whole edge as common interface \(\Gamma = \Omega^{(L)} \cap \Omega^{(R)} \). In addition, and without loss of generality, we assume that the common interface \(\Gamma \) is parameterized by

\[
F^{(L)}(0, \xi_2) = F^{(R)}(0, \xi_2), \quad \xi_2 \in [0,1],
\]

and denote by \(F \) the two-patch parameterization (also called two-patch geometry) consisting of the two spline parameterizations \(F^{(L)} \) and \(F^{(R)} \).

Remark 1 For simplicity, we have restricted ourselves to a univariate spline space \(S_p^r \) with the same knot multiplicity for all inner knots. Instead, a univariate spline space with different inner knot multiplicities can be used, as long as the multiplicity of each inner knot is at least 2 and at most \(p - 1 \). Note that the subspaces \(S_p^{r+1} \) and \(S_p^{r-1} \) should also be replaced by suitable spline spaces of regularity increased by one at each inner knot, and degree reduced by one, respectively. Furthermore, it is also possible to use different univariate spline spaces for both Cartesian directions and for both geometry mappings, with the requirement that both patches must have the same univariate spline space in \(\xi_2 \)-direction.

The two geometry mappings \(F^{(L)} \) and \(F^{(R)} \) uniquely determine up to a common function \(\gamma : [0,1] \to \mathbb{R} \) (with \(\gamma \neq 0 \)), the functions \(a^{(L)}, a^{(R)}, \beta : [0,1] \to \mathbb{R} \) given by

\[
a^{(S)}(\xi_2) = \gamma(\xi_2) \det \left(\partial_1 F^{(S)}(0, \xi_2), \partial_2 F^{(S)}(0, \xi_2) \right), \quad S \in \{L, R\},
\]

and

\[
\beta(\xi_2) = \gamma(\xi_2) \det \left(\partial_1 F^{(L)}(0, \xi_2), \partial_2 F^{(R)}(0, \xi_2) \right),
\]

satisfying for \(\xi_2 \in [0,1] \)

\[
a^{(L)}(\xi_2) a^{(R)}(\xi_2) < 0 \quad \text{(2)}
\]

and

\[
a^{(R)} \partial_1 F^{(L)}(0, \xi_2) - a^{(L)}(\xi_2) \partial_1 F^{(R)}(0, \xi_2) + \beta(\xi_2) \partial_2 F^{(L)}(0, \xi_2) = 0. \quad \text{(3)}
\]
In addition, there exist non-unique functions $\beta^{(L)}$ and $\beta^{(R)} : [0, 1] \to \mathbb{R}$ such that

$$\beta(\xi_2) = a^{(L)}(\xi_2)\beta^{(R)}(\xi_2) - a^{(R)}(\xi_2)\beta^{(L)}(\xi_2), \quad (4)$$

see e.g. [10, 42]. The two-patch geometry F is called analysis-suitable G^1 if there exist linear functions $a^{(S)}, \beta^{(S)}, S \in \{L, R\}$ with $a^{(L)}$ and $a^{(R)}$ relatively prime, such that equations (2)-(4) are satisfied for $\xi_2 \in [0, 1]$, see [10, 27].

In the following, we will only consider planar two-patch domains Ω which are described by analysis-suitable G^1 two-patch geometries F. Furthermore, we select those linear functions $a^{(S)}$ and $\beta^{(S)}, S \in \{L, R\}$, that minimize the terms

$$||a^{(L)} + 1||^2_{L^2([0,1])} + ||a^{(R)} - 1||^2_{L^2([0,1])}$$

and

$$||\beta^{(L)}||^2_{L^2([0,1])} + ||\beta^{(R)}||^2_{L^2([0,1])},$$

see [29].

2.2 The C^1 isogeometric space V and the subspace \mathbb{W}

We recall the concept of C^1 isogeometric spaces over analysis-suitable G^1 two-patch geometries studied in [10, 27, 29], and especially focus on a specific subspace of the entire space of C^1 isogeometric functions introduced in [29].

The space V of C^1 isogeometric spline functions on Ω (with respect to the two-patch geometry F and spline space S_p) is given by

$$V = \{\phi \in C^1(\Omega) : \phi \circ F^{(S)} \in S'_{p'} \otimes S'_{p'}, S \in \{L, R\}\}. \quad (5)$$

A function $\phi : \Omega \to \mathbb{R}$ belongs to the space V if and only if the functions $f^{(S)} = \phi \circ F^{(S)}$, $S \in \{L, R\}$, satisfy that

$$f^{(S)} \in S'_{p} \otimes S'_{p'}, \quad S \in \{L, R\},$$

$$f^{(L)}(0, \xi_2) = f^{(R)}(0, \xi_2), \quad \xi_2 \in [0, 1],$$

and

$$a^{(R)} \partial_1 f^{(L)}(0, \xi_2) - a^{(L)}(\xi_2) \partial_1 f^{(R)}(0, \xi_2) + \beta(\xi_2) \partial_2 f^{(L)}(0, \xi_2) = 0, \quad \xi_2 \in [0, 1],$$

see e.g. [10, 21, 30]. The structure and the dimension of the space V heavily depends on the functions $a^{(L)}$, $a^{(R)}$ and β, and was fully analyzed in [27] by computing a basis and its dimension for all possible configurations. Below, we restrict ourselves to a simpler subspace \mathbb{W} motivated by [29], which preserves the optimal approximation properties of V, and whose dimension is independent of the functions $a^{(L)}$, $a^{(R)}$ and β.

The C^1 isogeometric space \mathbb{W} is given as

$$\mathbb{W} = \text{span} \Phi, \quad \Phi = \Phi^{(L)} \cup \Phi^{(R)} \cup \Phi_{I_0} \cup \Phi_{I_1},$$

and the different parts of the basis are defined as

$$\Phi^{(L)} = \left\{ \phi^{(L)}_{i,j} : i \in I \setminus \{0, 1\}; j \in I \right\}, \quad S \in \{L, R\}, \quad (6)$$

$$\Phi_{I_0} = \left\{ \phi^{(L)}_{i} : i \in I_0 \right\}, \quad \Phi_{I_1} = \left\{ \phi^{(L)}_{i} : i \in I_1 \right\}, \quad (7)$$
where the C^1 isogeometric functions $\phi^{G^{(s)}}_{i,j}$, ϕ^{f^s} and ϕ^{f^t} are defined via
\[
(\phi^{G^{(s)}}_{i,j} \circ \mathbf{F}^{(s)})(\xi_1, \xi_2) = \begin{cases}
N'_{i,p}(\xi_1) N'_{j,p}(\xi_2) & \text{if } S = S', \\
0 & \text{otherwise},
\end{cases}
\]
\[i \in \{0, 1\}; \ j \in \{1, \ldots, N_{\Gamma}^{(s)}\}; \ S, S' \in \{L, R\}, \tag{8}
\]
\[
(\phi^{f^s}_i \circ \mathbf{F}^{(s)})(\xi_1, \xi_2) = N'_{i,p}(\xi_2) (N'_{0,p}(\xi_1) + N'_{1,p}(\xi_1)) + \beta^{(s)}(\xi_2) \sum_{p} N'_{1,p}(\xi_1), \quad i \in \{0, 1\}; \ S \in \{L, R\}, \tag{9}
\]
and
\[(\phi^{f^t}_i \circ \mathbf{F}^{(s)})(\xi_1, \xi_2) = \alpha^{(s)}(\xi_2) N'_{i-1,p}(\xi_2) N'_{1,p}(\xi_1), \quad i \in \{1, \ldots, N_{\Gamma}^{(s)}\}. \tag{10}\]

The construction of the C^1 isogeometric functions $\phi^{G^{(s)}}_{i,j}$, ϕ^{f^s} and ϕ^{f^t} guarantees that they are linearly independent and therefore form a basis of the C^1 isogeometric space W. Note that the basis functions (8) are standard tensor-product B-splines whose support is included in one of the two patches, while the functions (9)-(10) are combinations of standard B-splines and their support crosses the interface Γ (see Figure 1 for an example).

2.3 Representation of the basis with respect to $S'_p \otimes S'_p$

We describe the strategy shown in [27] to represent the spline functions $\phi^{G^{(s)}}_{i,j} \circ \mathbf{F}^{(s)}$, $\phi^{f^s} \circ \mathbf{F}^{(s)}$ and $\phi^{f^t} \circ \mathbf{F}^{(s)}$, $S \in \{L, R\}$, with respect to the spline space $S'_p \otimes S'_p$, using a vectorial notation. Let us first introduce the vectors of functions \mathbf{N}_0, \mathbf{N}_1, and \mathbf{N}_2, given by
\[
\mathbf{N}_0(\xi_1, \xi_2) = \{N_{0,p}(\xi_1) N_{j,p}(\xi_2)\}_{j \in \mathbb{A}}, \quad \mathbf{N}_1(\xi_1, \xi_2) = \{N_{1,p}(\xi_1) N_{j,p}(\xi_2)\}_{j \in \mathbb{A}},
\]
and
\[
\mathbf{N}_2(\xi_1, \xi_2) = \{N_{2,p}(\xi_1) N_{j,p}(\xi_2), \ldots, N_{1,p}(\xi_1) N_{j,p}(\xi_2), \ldots, N_{n-1,p}(\xi_1) N_{j,p}(\xi_2)\}^T,
\]
which represent the whole basis of $S'_p \otimes S'_p$. Let us also introduce, the vectors of functions
\[
\phi_{G^{(s)}}(\mathbf{x}) = [\phi^{G^{(s)}}_{i,j}(\mathbf{x})]_{i,j \in \mathbb{A}}, \quad \phi_{f^s}(\mathbf{x}) = [\phi^{f^s}(\mathbf{x})]_{i,j \in \mathbb{A}},
\]
and finally, for $S \in \{L, R\}$, the vectors of functions $\phi_{G^{(s)}}, \phi_{f^s}, \phi_{f^t}$, given by
\[
\phi_{G^{(s)}}(\xi_1, \xi_2) = [\phi^{G^{(s)}}(\xi_1, \xi_2)]_{i,j \in \mathbb{A}}, \quad \phi_{f^s}(\xi_1, \xi_2) = [\phi^{f^s}(\xi_1, \xi_2)]_{i,j \in \mathbb{A}},
\]
\[
\phi_{f^t}(\xi_1, \xi_2) = [\phi^{f^t}(\xi_1, \xi_2)]_{i,j \in \mathbb{A}}.
\]

Since the basis functions $\phi^{G^{(s)}}_{i,j}$ are just the “standard” isogeometric functions, the spline functions $\phi_{G^{(s)}}$ automatically belong to the basis of the spline space $S'_p \otimes S'_p$, while
Isogeometric analysis with C^1 hierarchical functions on planar two-patch geometries

Fig. 1 Example of basis functions of \mathcal{W} on the two-patch domain (a): figures (b)-(c) show two basis functions of type (8) (standard B-splines whose support is included in one of the two patches), while figures (d) and (e) correspond to basis functions of type (9) and (10), respectively (whose supports intersect the interface).

an analysis of the basis functions in $\hat{\phi}^{(s)}_{f_0}(\xi_1, \xi_2)$ and $\hat{\phi}^{(s)}_{f_1}(\xi_1, \xi_2)$, leads to the following rep-
spline bases that are locally linearly independent basis, that is defined in terms of a multilevel approach applied to an underlying sequence of this section introduces an abstract framework for the construction of the hierarchical spline representation
\[
\begin{bmatrix}
\phi_{B,S}^{(s)}(\xi_1, \xi_2) \\
\phi_{F,S}^{(s)}(\xi_1, \xi_2) \\
\phi_{\text{ref},S}^{(s)}(\xi_1, \xi_2)
\end{bmatrix} = \begin{bmatrix}
\tilde{B} & \tilde{B}^{(s)} & 0 \\
0 & \tilde{B}^{(s)} & 0 \\
0 & 0 & I_{m(n-2)}
\end{bmatrix} \begin{bmatrix}
N_0(\xi_1, \xi_2) \\
N_1(\xi_1, \xi_2) \\
N_2(\xi_1, \xi_2)
\end{bmatrix}, \quad S \in \{L, R\},
\]
where \(I_m\) denotes the identity matrix of dimension \(m\), and the other blocks of the matrix take the form
\(\tilde{B} = [\tilde{b}_{ij}]_{i \in \mathbb{I}, j \in \mathbb{J}}\), \(\tilde{B}^{(s)} = [\tilde{b}_{ij}^{(s)}]_{i \in \mathbb{I}, j \in \mathbb{J}}\), and \(\tilde{B}^{(s)} = [\tilde{b}_{ij}^{(s)}]_{i \in \mathbb{I}, j \in \mathbb{J}}\). In fact, these are sparse matrices, and by defining the index sets
\[
\mathbb{J}_{0,i} = \{j \in \mathbb{I} : \text{supp}(N_{j,p}^r) \cap \text{supp}(N_{j,p-1}^r) \neq \emptyset\}, \quad \text{for } i \in \mathbb{I}_0,
\]
and
\[
\mathbb{J}_{1,i} = \{j \in \mathbb{I} : \text{supp}(N_{j,p}^r) \cap \text{supp}(N_{j,p-1}^r) \neq \emptyset\}, \quad \text{for } i \in \mathbb{I}_1,
\]
it can be seen that the possible non-zero entries are limited to \(\tilde{b}_{ij}, \tilde{b}_{ij}^{(s)}, i \in \mathbb{I}_0, j \in \mathbb{J}_{0,i}\), and \(\tilde{b}_{ij}^{(s)}, i \in \mathbb{I}_1, j \in \mathbb{J}_{1,i}\) respectively.

For the actual computation of these coefficients, let us denote by \(\xi_m\), with \(m \in \mathbb{I}\), the Greville abscissae of the univariate spline space \(\mathcal{S}_p\). Then, for each \(S \in \{L, R\}\) and for each \(i \in \mathbb{I}_0\) or \(i \in \mathbb{I}_1\), the linear factors \(\tilde{b}_{ij}, \tilde{b}_{ij}^{(s)}\), \(j \in \mathbb{J}_{0,i}\) and \(\tilde{b}_{ij}^{(s)}, j \in \mathbb{J}_{1,i}\), can be obtained by solving the following systems of linear equations
\[
\left(\phi_i^{(t)} \circ F^{(i)}\right)(0, \xi_m) = \sum_{j \in \mathbb{J}_{0,j}} \tilde{b}_{ij} N_{j,p}^r(\xi_m), \quad m \in \mathbb{J}_{0,i},
\]
\[
\frac{\tau \partial_i \left(\phi_i^{(t)} \circ F^{(i)}\right)(0, \xi_m)}{p} = \left(\phi_i^{(t)} \circ F^{(i)}\right)(0, \xi_m) = \sum_{j \in \mathbb{J}_{0,j}} \tilde{b}_{ij}^{(s)} N_{j,p}^r(\xi_m), \quad m \in \mathbb{J}_{0,i},
\]
and
\[
\frac{\tau \partial_i \left(\phi_i^{(t)} \circ F^{(i)}\right)(0, \xi_m)}{p} = \sum_{j \in \mathbb{J}_{1,j}} \tilde{b}_{ij}^{(s)} N_{j,p}^r(\xi_m), \quad m \in \mathbb{J}_{1,i},
\]
respectively, see [27] for more details. Note that the coefficients \(\tilde{b}_{ij}, i \in \mathbb{I}_0\), are exactly the spline coefficients of the B-spline \(N_{j,p}^{r+1}\) for the spline representation with respect to the space \(\mathcal{S}_p\), and can also be computed by simple knot insertion.

3 C^4 hierarchical isogeometric spaces on two-patch geometries

This section introduces an abstract framework for the construction of the hierarchical spline basis, that is defined in terms of a multilevel approach applied to an underlying sequence of spline bases that are locally linearly independent and characterized by local and compact supports. The C^4 hierarchical isogeometric spaces on two-patch geometries are then defined by applying the hierarchical construction to the C^4 isogeometric functions described in the previous section. Particular attention is devoted to the proof of local linear independence of the basis functions, and to the refinement mask that explicitly identifies a two-scale relation between hierarchical functions of two consecutive levels. Note that, even if the hierarchical framework can be applied with different refinement strategies between consecutive refinement levels, we here focus on dyadic refinement, the standard choice in most application contexts. In the following the refinement level \(\ell\) is denoted as a superscript associated to the corresponding symbol.
3.1 Hierarchical splines: abstract definition

Let \(\mathbb{U}^0 \subset \mathbb{U}^1 \subset \ldots \subset \mathbb{U}^{N-1} \) be a sequence of \(N \) nested multivariate spline spaces defined on a closed domain \(D \subset \mathbb{R}^d \), so that any space \(\mathbb{U}^\ell \), for \(\ell = 0, \ldots, N-1 \), is spanned by a (finite) basis \(\mathcal{P}^\ell \) satisfying the following properties.

(P1) Local linear independence;
(P2) Local and compact support.

The first property guarantees that for any subdomain \(S \), the restrictions of the (non-vanishing) functions \(\psi \in \mathcal{P}^\ell \) to \(S \) are linearly independent. The locality of the support instead enables to localize the influence of the basis functions with respect to delimited areas of the domain.

Note that the nested nature of the spline spaces implies the existence of a two-scale relation between adjacent bases: for any level \(\ell \), each basis function in \(\mathcal{P}^\ell \) can be expressed as linear combination of basis functions in \(\mathcal{P}^{\ell+1} \).

By also considering a sequence of closed nested domains \(\Omega^0 \supseteq \Omega^1 \supseteq \ldots \supseteq \Omega^{N-1} \), we can define a hierarchical spline basis according to the following definition.

Definition 1 The hierarchical spline basis \(\mathcal{H} \) with respect to the domain hierarchy (12) is defined as

\[
\mathcal{H} = \left\{ \psi \in \mathcal{P}^\ell : \text{supp}^0 \psi \subseteq \Omega^\ell \land \text{supp}^0 \psi \not\subseteq \Omega^{\ell+1} \right\},
\]

where \(\text{supp}^0 \psi = \text{supp} \psi \cap \Omega^0 \).

Note that the basis \(\mathcal{H} = \mathcal{H}^{N-1} \) can be iteratively constructed as follows.

1. \(\mathcal{H}^0 = \left\{ \psi \in \mathcal{P}^0 : \text{supp}^0 \psi \neq \emptyset \right\} \);
2. for \(\ell = 0, \ldots, N-2 \)
\[
\mathcal{H}^{\ell+1} = \mathcal{H}^{\ell+1}_A \cup \mathcal{H}^{\ell+1}_B,
\]

where

\[
\mathcal{H}^{\ell+1}_A = \left\{ \psi \in \mathcal{H}^\ell : \text{supp}^0 \psi \not\subseteq \Omega^{\ell+1} \right\} \quad \text{and} \quad \mathcal{H}^{\ell+1}_B = \left\{ \psi \in \mathcal{P}^{\ell+1} : \text{supp}^0 \psi \subseteq \Omega^{\ell+1} \right\}.
\]

The main properties of the hierarchical basis can be summarized as follows.

Proposition 1 By assuming that properties (P1)-(P2) hold for the bases \(\mathcal{P}^\ell \), the hierarchical basis satisfies the following properties

(i) the functions in \(\mathcal{H} \) are linearly independent,
(ii) the intermediate spline spaces are nested, namely \(\text{span} \mathcal{H}^\ell \subseteq \text{span} \mathcal{H}^{\ell+1} \),
(iii) given an enlargement of the subdomains \((\hat{\Omega}^\ell)_{\ell=0,\ldots,N-1} \) with \(N \leq \hat{N} \), such that \(\Omega^0 = \hat{\Omega}^0 \) and \(\Omega^\ell \subseteq \hat{\Omega}^\ell \) for \(\ell = 1, \ldots, N-1 \), then \(\text{span} \mathcal{H} \subseteq \text{span} \hat{\mathcal{H}} \).

Proof The proof follows along the same lines as in [49] for hierarchical B-splines, and we present it here for the sake of completeness.

Linear independence is proved by induction. By definition \(\mathcal{H}^0 = \mathcal{P}^0 \), which is a basis for \(\mathbb{U}^0 \), and hence they are linearly independent. Assuming that the result is true for \(\mathcal{H}^\ell \), to prove linear independence for \(\mathcal{H}^{\ell+1} = \mathcal{H}^{\ell+1}_A \cup \mathcal{H}^{\ell+1}_B \), we write

\[
0 = \sum_{\psi \in \mathcal{H}^{\ell+1}_A} c_\psi \psi + \sum_{\psi' \in \mathcal{H}^{\ell+1}_B} c_{\psi'} \psi'.
\]
Since functions in $\mathcal{H}_y^{r+1} \setminus \mathcal{H}'$ vanish in $\Omega \setminus \Omega^{r+1}$, by linear independence of \mathcal{H}', and using $\mathcal{H}_y^{r+1} \subseteq \mathcal{H}'$, the coefficients c_{γ} are equal to zero. Then, since $\mathcal{H}_y^{r+1} \subseteq \mathcal{H}^{r+1}$, by local linear independence also the coefficients c_{ψ} are zero, which proves linear independence.

Regarding the fact that span$\mathcal{H}' \subseteq$ span\mathcal{H}^{r+1}, let $\psi' \in \mathcal{H}'$, we need to prove that $\psi' \in \text{span} \mathcal{H}^{r+1}$. The result trivially holds if supp$\psi' \subseteq \Omega^{r+1}$, as in this case $\psi' \in \mathcal{H}^{r+1}$. Let us consider the case supp$\psi' \subseteq \Omega^{r+1}$. By nestedness of the tensor-product spaces we can write

$$\psi' = \sum_{\psi' \in \psi^{r+1}} c_{\psi'} \psi^{r+1},$$

and by local linear independence of the basis functions in ψ^{r+1}, we know that $c_{\psi'} = 0$ if supp$\psi' \not\subseteq \Omega^{r+1}$, and therefore $\psi' \in \text{span} \mathcal{H}_y^{r+1} \subset \text{span} \mathcal{H}^{r+1}$.

The proof of the nestedness of the spaces after enlargement can be found in [17, Prop.6].

Proposition 1 summarizes the key properties of a hierarchical set of basis functions constructed according to Definition 1, when the underlying sequence of bases \mathcal{B}^{ℓ} satisfies only properties (P1)-(P2).

The results in Proposition 1 remain valid when additional assumptions are considered [17]. In particular, if the basis functions in \mathcal{B}^{ℓ}, for $\ell = 0, \ldots, N-1$ are non-negative, the hierarchical basis functions are also non-negative. Moreover, the partition of unity property in the hierarchical setting can be recovered by considering the truncated basis for hierarchical spline spaces [17]. In this case, the partition of unity property at each level ℓ is also required together with the positiveness of the coefficients in the refinement mask. Even if the construction of C^1 functions on two patch geometries considered in the previous section does not satisfy the non-negativity and partition of unity properties, we could still apply the truncation mechanism to reduce the support of coarser basis functions in the C^1 hierarchical basis. Obviously, the resulting truncated basis would not satisfy the other interesting properties of truncated hierarchical B-splines, see [16, 17].

3.2 The C^1 hierarchical isogeometric space

By following the construction for the C^1 isogeometric spline space presented in Section 2, we can now introduce its hierarchical extension. We recall that instead of considering the full C^1 space \mathcal{V} at any hierarchical level, we may restrict to the simpler subspace \mathcal{W}, whose dimension does not depend on the functions $\alpha^{(p)}$, $\alpha^{(R)}$ and β, and it has the same optimal approximation properties of the full space.

We consider an initial knot vector $\Xi_p^{(0)} \equiv \Xi_p$ as defined in (1) for then introducing the sequence of knot vectors with respect to a fixed degree p

$$\Xi_p^{(0)}, \Xi_p^{(1)}, \ldots, \Xi_p^{(N-1)},$$

where each knot vector

$$\Xi_p^{(\ell)} = \left[0, \ldots, 0, t_1^{(p+1)} \times (p+1), \ldots, t_1^{(p+1)} \times (p+1), \ldots, t_1^{(p+1)} \times (p+1), \ldots, t_1^{(p+1)} \times (p+1), 1, \ldots, 1 \right],$$

for $\ell = 1, \ldots, N-1$, is obtained via dyadic refinement of the knot vector of the previous level, keeping the same degree and regularity, and therefore $k' = 2k-1+1$. We denote by $\mathcal{S}_p^{(\ell)}$ the univariate spline space in $[0, 1]$ with respect to the open knot vector $\Xi_p^{(\ell)}$, and let $N^{(\ell)}_{i,p}$.
for \(i \in \mathbf{1}^\ell = \{0, \ldots, p + k^\ell(p - r)\} \), be the associated B-splines. In addition, as in the one-level case, \(\mathcal{S}^{p+1,\ell}_p \) and \(\mathcal{S}^{p-1,\ell}_p \) (\(N^{p+1,\ell}_r \) and \(N^{p-1,\ell}_r \)) indicate the subspaces (and their basis functions) of higher regularity and lower degree, respectively. We also denote by

\[
n^\ell = p + 1 + k^\ell(p - r), \quad n^\ell_0 = p + 1 + k^\ell(p - r - 1), \quad \text{and} \quad n^\ell_1 = p + k^\ell(p - r - 1),
\]

the dimensions of the spline spaces \(\mathcal{S}^{p+1,\ell}_p \) and \(\mathcal{S}^{p-1,\ell}_p \), respectively, and, analogously to \(\mathbf{1}^\ell \), we introduce the index sets

\[
\mathbf{1}^{\ell}_0 = \{0, \ldots, n^\ell_0 - 1\}, \quad \mathbf{1}^{\ell}_1 = \{0, \ldots, n^\ell_1 - 1\},
\]

corresponding to functions in \(\mathcal{S}^{p+1,\ell}_p \) and \(\mathcal{S}^{p-1,\ell}_p \), respectively.

Let

\[
\mathcal{V}^0 \subset \mathcal{V}^1 \subset \ldots \subset \mathcal{V}^{N-1}
\]

be a sequence of nested \(\mathcal{C}^1 \) isogeometric spline spaces, with \(\mathcal{V}^\ell \) defined on the two-patch domain \(\Omega = \Omega^{p+1} \cup \Omega^{p-1} \) with respect to the spline space of level \(\ell \). Analogously to the construction detailed in Section 2.2, for each level \(0 \leq \ell \leq N - 1 \) let us consider the subspace

\[
\mathcal{W}^{\ell} = \text{span} \varphi^{\ell}, \quad \text{with} \quad \varphi^{\ell} = \varphi^{\ell}_{\Omega^0} \cup \varphi^{\ell}_{\Omega^1} \cup \varphi^{\ell}_{\Gamma^0} \cup \varphi^{\ell}_{\Gamma^1},
\]

where the basis functions are given by

\[
\varphi^{\ell}_{\Omega^0} = \left\{ \varphi^{\ell}_{i,j} : i \in \mathbf{1}^{\ell}_1 \setminus \{0, 1\}; \ j \in \mathbf{1}^{\ell}_1 \right\}, \quad \varphi^{\ell}_{\Omega^1} = \left\{ \varphi^{\ell}_{i,j} : i \in \mathbf{1}^{\ell}_0 \right\}, \quad \varphi^{\ell}_{\Gamma^0} = \left\{ \varphi^{\ell}_{i,j} : i \in \mathbf{1}^{\ell}_1 \right\}, \quad \varphi^{\ell}_{\Gamma^1} = \left\{ \varphi^{\ell}_{i,j} : i \in \mathbf{1}^{\ell}_1 \right\},
\]

with \(S \in \{L, R\} \), directly defined as in (6) and (7) for the one-level case.

By considering a domain hierarchy as in (12) on the two-patch domain \(\Omega = \Omega^\ell \), and the sets of isogeometric functions \(\varphi^{\ell} \) at different levels, we arrive at the following definition

Definition 2 The \(\mathcal{C}^1 \) hierarchical isogeometric space \(\mathcal{W}_H \) with respect to a domain hierarchy of the two-patch domain \(\Omega \), that satisfies (12) with \(\Omega^0 = \Omega \), is defined as

\[
\mathcal{W}_H = \text{span} \mathcal{W} \quad \text{with} \quad \mathcal{W} = \left\{ \varphi \in \varphi^{\ell} : \text{supp}^o \varphi \subseteq \Omega^\ell \land \text{supp}^o \varphi \nsubseteq \mathcal{Q}^{\ell+1} \right\}.
\]

To prove that the set of functions \(\mathcal{W} \) is indeed a basis of the \(\mathcal{C}^1 \) hierarchical isogeometric space, we need to verify the nestedness of the spaces \(\mathcal{W}^{\ell} \), and that the one-level \(\mathcal{C}^1 \) bases that span each \(\mathcal{W}^{\ell} \), for \(\ell = 0, \ldots, N - 1 \), satisfy the hypotheses of Proposition 1, i.e. properties (P1)-(P2). The locality and compactness of the support of these functions in (P2) comes directly by construction and by the same property for standard B-splines, see (8)-(10) and Figure 1. The property of local linear independence in (P1) instead is proven in Theorem 1 below, see Section 3.3.

Finally, while the nestedness of the spaces \(\mathcal{V}^{\ell} \), \(\ell = 0, 1, \ldots, N - 1 \), directly follows from definition (5), this is not the case for the spaces \(\mathcal{W}^{\ell} \), \(\ell = 0, 1, \ldots, N - 1 \). In Section 3.4 we present the refinement mask to express the basis functions in \(\varphi^{\ell} \) from the space \(\mathcal{W}^{\ell} \) as linear combinations of basis functions in \(\varphi^{\ell+1} \) from the space \(\mathcal{W}^{\ell+1} \). This implies the nested nature of the spaces \(\mathcal{W}^{\ell} \), \(\ell = 0, 1, \ldots, N - 1 \).
3.3 Local linear independence of one-level basis functions

One important key property for the construction of hierarchical spline spaces is the local linear independence of the basis functions of one level. The basis functions in Φ^ℓ satisfy this property, as stated in the following theorem.

Theorem 1 The set of basis functions $\Phi^\ell = \Phi^\ell_{D^1} \cup \Phi^\ell_{D^2} \cup \Phi^\ell_{I^1} \cup \Phi^\ell_{I^2}$, is locally linearly independent, for $\ell = 0, \ldots, N - 1$.

Proof Since we have to prove the statement for any hierarchical level ℓ, we just remove the superscript ℓ in the proof to simplify the notation. Recall that the functions in Φ are linearly independent. It is well known, or easy to verify, that each of the following sets of univariate functions is locally linearly independent, as they are (mapped) standard B-splines. Furthermore, it is also well known, or easy to verify, that each of the following sets of univariate functions is locally linearly independent

(a) $\{N_{0,p}^r + N_{1,p}^r, N_{1,p}^s\} \cup \{N_{0,p}^r\}_{j\in I(0,1]}$,
(b) $\{N_{1,p}^{s+1}\}_{j\in I}$,
(c) $\{\tilde{N}_{1,p}^r\}_{j\in I}$.

We prove that the set of functions Φ is locally linearly independent, which means that, for any open set $\tilde{\Omega} \subset \Omega$ the functions of Φ that do not vanish in $\tilde{\Omega}$ are linearly independent on $\tilde{\Omega}$. Let $\tilde{I}_0 \subset I_0$, $\tilde{I}_1 \subset I_1$ and $\tilde{I}_1^{(s)} \subset I_1$, $j \in I_1 \setminus \{0, 1\}$, $S \in \{L, R\}$, be the sets of indices corresponding to those functions $\phi_{l_0}^\ell$, $\phi_{l_1}^\ell$ and $\phi_{l_{p,1}}^\ell$, respectively, that do not vanish on $\tilde{\Omega}$. Then the equation

$$\sum_{i \in \tilde{I}_0} \mu_0 \phi_{l_0}^\ell(x) + \sum_{i \in \tilde{I}_1} \mu_1 \phi_{l_1}^\ell(x) + \sum_{S \in \{L, R\}} \sum_{j \in I_1 \setminus \{0, 1\}} \sum_{i \in \tilde{I}_1^{(s)}} \mu_{l_j}^S \phi_{l_j}^S(x) = 0, \quad x \in \tilde{\Omega}$$ (13)

has to imply $\mu_0 = 0$ for all $i \in \tilde{I}_0$, $\mu_1 = 0$ for all $i \in \tilde{I}_1$, and $\mu_{l_j}^S = 0$ for all $i \in \tilde{I}_1^{(s)}$, $j \in I_1 \setminus \{0, 1\}$, $S \in \{L, R\}$. Equation (13) implies that

$$\sum_{i \in \tilde{I}_0} \mu_0 \phi_{l_0}^\ell \circ F^{(S)}(\xi_1, \xi_2) + \sum_{i \in \tilde{I}_1} \mu_1 \phi_{l_1}^\ell \circ F^{(S)}(\xi_1, \xi_2)$$

$$+ \sum_{j \in I_1 \setminus \{0, 1\}} \sum_{i \in \tilde{I}_1^{(s)}} \mu_{l_j}^S \phi_{l_j}^S \circ F^{(S)}(\xi_1, \xi_2) = 0,$$

for $(\xi_1, \xi_2) \in \tilde{\Omega}^{(s)}$ and $S \in \{L, R\}$, where $\tilde{\Omega}^{(s)} \subseteq (0, 1)^2$ are the corresponding parameter domains for the geometry mappings $F^{(S)}$ such that the closure of $\tilde{\Omega}$ is

$$\text{cl}(\tilde{\Omega}) = \text{cl}\left(\{F^{(L)}(\tilde{\Omega}^{(L)}) \cup F^{(R)}(\tilde{\Omega}^{(R)})\}\right).$$

By substituting the functions $\phi_{l_0}^\ell \circ F^{(S)}$, $\phi_{l_1}^\ell \circ F^{(S)}$ and $\phi_{l_{p,1}}^\ell \circ F^{(S)}$ by their corresponding expressions, we obtain

$$\sum_{i \in \tilde{I}_0} \mu_0 \left(N_{0,p}^{r+1}(\xi_2)N_{0,p}^r(\xi_1) + N_{1,p}^r(\xi_1) + \beta^S(\xi_2)(N_{0,p}^{r+1}(\xi_1))^{\xi_2} N_{1,p}^r(\xi_1)\right)$$

$$+ \sum_{i \in \tilde{I}_1} \left(a^{(S)}(\xi_2)N_{1,p}^r(\xi_1)\right) + \sum_{j \in I_1 \setminus \{0, 1\}} \sum_{i \in \tilde{I}_1^{(s)}} \mu_{l_j}^S N_{1,p}^r(\xi_1)N_{1,p}^r(\xi_2) = 0,$$

where $a^{(S)}(\xi_2)$ is a function of ξ_2 and $\beta^S(\xi_2)$ is a function of ξ_2 for $S \in \{L, R\}$.
for \((\xi_1, \xi_2) \in \tilde{\Omega}^{(S)}\) and \(S \in \{L, R\}\), which can be rewritten as

\[
\left(N'_{0,p}(\xi_1) + N'_{r,p}(\xi_1)\right)\left(\sum_{i \in \mathcal{I}_0} \mu_{0,i} N'_{i,p+1}(\xi_2)\right) + N'_{1,p}(\xi_1)\left(\sum_{i \in \mathcal{I}_1} \mu_{1,i} \alpha^{(S)}(\xi_2) N'_{i,p-1}(\xi_2)\right) + \sum_{j \in \Omega(0,1)} N'_{r,p}(\xi_1)\left(\sum_{i \in \mathcal{I}^{(S)}} \mu_{j,i} N'_{i,p}(\xi_2)\right) = 0.
\tag{14}
\]

Now, since \(\tilde{\Omega}\) and \(\tilde{\Omega}^{(S)}\) are open, for each \(i \in \tilde{\mathcal{I}}_0\) there exists a point \((\xi_1^{(S)}, \xi_2^{(S)}) \in \tilde{\Omega}^{(S)}\), with \(S \in \{L, R\}\), such that \(\phi^{(S)}\) does not vanish in a neighborhood \(Q \subset \tilde{\Omega}^{(S)}\) of the point. Due to the fact that the univariate functions \(N'_{0,p}, N'_{1,p}, N'_{r,p}\) and \(N'_{i,p}\), \(j \in \mathcal{I}\), are locally linearly independent and that \(N'_{0,p}(\xi_1^{(S)}) + N'_{1,p}(\xi_1^{(S)}) \neq 0\), we get that

\[
\sum_{i \in \mathcal{I}_0} \mu_{0,i} N'_{i,p+1}(\xi_2) = 0, \text{ for } \xi_2 \text{ such that } (\xi_1^{(S)}, \xi_2) \in Q.
\]

This equation and the local linear independence of the univariate functions \(\{N'_{i,p}^{(S)}\}_{i \in \mathcal{I}_1}\) imply that \(\mu_{0,i} = 0\). Applying this argument for all \(i \in \tilde{\mathcal{I}}_0\), we obtain \(\mu_{0,i} = 0, i \in \tilde{\mathcal{I}}_0\), and the term (14) simplifies to

\[
N'_{1,p}(\xi_1)\left(\sum_{i \in \mathcal{I}_1} \mu_{1,i} \alpha^{(S)}(\xi_2) N'_{i,p-1}(\xi_2)\right) + \sum_{j \in \Omega(0,1)} N'_{r,p}(\xi_1)\left(\sum_{i \in \mathcal{I}^{(S)}} \mu_{j,i} N'_{i,p}(\xi_2)\right) = 0.
\tag{15}
\]

Similarly, we can obtain for each \(i \in \tilde{\mathcal{I}}_1\)

\[
\sum_{i \in \mathcal{I}_1} \mu_{1,i} \alpha^{(S)}(\xi_2) N'_{i,p-1}(\xi_2) = 0, \text{ for } \xi_2 \text{ such that } (\xi_1^{(S)}, \xi_2) \in Q, \tag{16}
\]

with the corresponding points \((\xi_1^{(S)}, \xi_2) \in \tilde{\Omega}\) and neighborhoods \(Q \subset \tilde{\Omega}\). Since the function \(\alpha^{(S)}\) is just a linear function which never takes the value zero, see (2), equation (16) implies that

\[
\sum_{i \in \mathcal{I}_1} \mu_{1,i} N'_{i,p-1}(\xi_2) = 0, \text{ for } \xi_2 \text{ such that } (\xi_1^{(S)}, \xi_2) \in Q.
\]

The local linear independence of the univariate functions \(\{N'_{i,p-1}\}_{i \in \mathcal{I}_1}\) implies as before that \(\mu_{1,i} = 0, i \in \tilde{\mathcal{I}}_1\), and therefore the term (15) simplifies further to

\[
\sum_{j \in \Omega(0,1)} N'_{r,p}(\xi_1)\left(\sum_{i \in \mathcal{I}^{(S)}} \mu_{j,i} N'_{i,p}(\xi_2)\right) = 0.
\]

Finally, \(\mu_{j,i}^{(S)} = 0, i \in \tilde{\mathcal{I}}^{(S)}, j \in \mathcal{I}\), \(S \in \{L, R\}\), follows directly from the fact that the functions in \(\Phi_{L^0} \cup \Phi_{R^0}\) are locally linearly independent. \(\square\)
3.4 Refinement mask

Let us recall the notations and assumptions from Section 3.2 for the multi-level setting of the spline spaces \(\mathcal{W}_\ell, \ell = 0, 1, \ldots, N - 1 \), where the upper index \(\ell \) refers to the specific level of refinement. We will use the same upper index in an analogous manner for further notations, which have been mainly introduced in Section 2.3 for the one-level case, such as for the vectors of functions \(\mathbf{N}_0, \mathbf{N}_1, \mathbf{N}_2 \) and \(\mathbf{\phi}_0, \mathbf{\phi}_1, \mathbf{\phi}_2, S \in \{L, R\} \), and for the transformation matrices \(\mathbf{B}, \mathbf{B}^{S}, \) and \(\mathbf{B}^{S} \), \(S \in \{L, R\} \).

Let \(\mathbb{R}_+ \) be the set of nonnegative real numbers. Based on basic properties of B-splines, there exist refinement matrices (also called refinement masks) \(\mathbf{A}_{\ell}^{r+s} \in \mathbb{R}^{n \times n} \) such that

\[
\mathbf{N}_{\ell+p}^{r+s} = \mathbf{A}_{\ell}^{r+s} \mathbf{N}_{\ell}^{r+s},
\]

where \(\mathbb{N}_{\ell}^{r+s} \) refers to the specific level of refinement. We will use the same upper index in an analogous manner for further notations, and for the transformation matrices \(\mathbf{B}, \mathbf{B}^{S}, \) and \(\mathbf{B}^{S} \), \(S \in \{L, R\} \).

Let \(\mathbf{\phi}_0, \mathbf{\phi}_1, \mathbf{\phi}_2 \) be the refinement relation for the functions \(\mathbf{\phi}_0, \mathbf{\phi}_1, \mathbf{\phi}_2 \), \(S \in \{L, R\} \). For this, let us consider the corresponding spline functions \(\mathbf{\phi}_0, \mathbf{\phi}_1, \mathbf{\phi}_2 \), \(S \in \{L, R\} \). On the one hand, using first relation (11) and then relation (17), we obtain

\[
\mathbf{\phi}_0^{r+s} = \mathbf{\phi}_0^{r+s} \mathbf{N}_{\ell}^{r+s},
\]

which is equal to

\[
\mathbf{\phi}_0^{r+s} = \mathbf{\phi}_0^{r+s} \mathbf{N}_{\ell}^{r+s},
\]
On the other hand, the functions \(\phi_{I_0}^{(S),s} \) possess the form

\[
\phi_{I_0}^{(S),s}(\xi_1, \xi_2) = \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{A}^{r+1,1}_p \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{N}_{1,p}^{r+1,1}(\xi_1).
\]

By refining the B-spline functions \(N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \), we obtain

\[
\phi_{I_0}^{(S),s}(\xi_1, \xi_2) = \phantom{\frac{r_1}{p}} \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{A}^{r+1,1}_p \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{N}_{1,p}^{r+1,1}(\xi_1).
\]

Then, refining the B-spline functions \(N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \) and \(N_{0,0}^{r+1,1}(\xi_1) \) leads to

\[
\phi_{I_0}^{(S),s}(\xi_1, \xi_2) = \phantom{\frac{r_1}{p}} \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{A}^{r+1,1}_p \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{N}_{1,p}^{r+1,1}(\xi_1),
\]

where \(\lambda_{1,j}^{(s)} \) are the entries of the refinement matrix \(\mathbf{A}_p^{r+1,1} \). Since we refine dyadically, we have \(\lambda_{1,0}^{(s)} = 1, \lambda_{1,1}^{(s)} = \frac{1}{2}, \lambda_{1,0}^{(s)} = 0, \lambda_{1,1}^{(s)} = \frac{1}{2} \) and \(\tau_1^{(s)} = \frac{r_1}{p} \), and we get

\[
\phi_{I_0}^{(S),s}(\xi_1, \xi_2) = \phantom{\frac{r_1}{p}} \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{A}^{r+1,1}_p \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{N}_{1,p}^{r+1,1}(\xi_1),
\]

which is equal to

\[
\phi_{I_0}^{(S),s}(\xi_1, \xi_2) = \phantom{\frac{r_1}{p}} \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{A}^{r+1,1}_p \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{N}_{1,p}^{r+1,1}(\xi_1),
\]

By analyzing the two equal value terms (19) and (20) with respect to the spline representation in \(\xi_1 \)-direction formed by the B-splines \(N_{1,p}^{r+1,1}(\xi_1) \), one can observe that both first terms and both second terms each must coincide. This leads to

\[
\phi_{I_0}^{(S),s}(\xi_1, \xi_2) = \phantom{\frac{r_1}{p}} \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{A}^{r+1,1}_p \left[N_{0,0}^{r+1,1}(\xi_1) + N_{0,1}^{r+1,1}(\xi_1) \right] \mathbf{N}_{1,p}^{r+1,1}(\xi_1),
\]

which directly implies the refinement relation for the functions \(\phi_{I_0}^{(S),s} \).

The refinement for the functions \(\phi_{I_j}^{(s)} \) can be proven similarly by using the appropriate terms and matrices, with a detailed proof given in Appendix A. Finally, the relation for the functions \(\phi_{I_0}^{(s)} \), \(S \in \{ L, R \} \), directly follows from relation (17), since they correspond to “standard” B-splines. \(\square \)
As a direct consequence of the previous proposition, and in view of the results provided by Theorem 1, we arrive at the following theorem, which is the main result of the paper.

Theorem 2 Let \(N \in \mathbb{N} \). The sequence of spaces \(W^\ell, \ell = 0, 1, \ldots, N - 1 \), is nested, i.e.

\[
W^0 \subset W^1 \subset \ldots \subset W^{N-1}.
\]

Moreover the corresponding bases \(\Phi^\ell \), for \(\ell = 0, \ldots, N - 1 \), satisfy properties (P1)-(P2), for which they also satisfy Proposition 1. In particular, \(W \) is a basis for the \(C^1 \) hierarchical space \(W_H \).

4 Numerical examples

We present now some numerical examples to show the good performance of the hierarchical \(C^1 \) spaces for their use in combination with adaptive methods. We start with a brief presentation of the implementation of the new spaces in the Octave/Matlab software GeoPDEs [48], that we have used in our numerical examples, for a better understanding of how they can be implemented in an existing isogeometric code.

4.1 Some details about the implementation

The implementation of GeoPDEs is based on two main structures: the mesh, that contains the information related to the computational geometry and the quadrature, and that did not need any change; and the space, with the necessary information to evaluate the basis functions and their derivatives. The new implementation was done in two steps: we first introduced the space of \(C^1 \) basis functions of one single level, as in Section 2.2, and then we added the hierarchical construction.

For the space of one level, we created a new space structure that contains the numbering for the basis functions of the three different types, namely \(\Phi_{\Omega^S}, \Phi_{\Gamma^L}, \) and \(\Phi_{\Gamma^R} \). The evaluation of the basis functions, and also matrix assembly, is performed using the representation of \(C^1 \) basis functions in terms of standard tensor-product B-splines, as in Section 2.3. Indeed, one can first assemble the matrix for tensor-product B-splines, and then multiply on each side this matrix by the same matrix given in (11), in the form

\[
K^S \mathbf{w} = B^S K^S_0 (B^S)^T, \quad \text{with} \quad B^S = \begin{bmatrix} \hat{B} & \tilde{B}^S & 0 \\ 0 & \tilde{B}^S & 0 \\ 0 & 0 & I_{n(n-2)} \end{bmatrix}, \quad \text{for} \ S = L, R,
\]

where \(K^S_0 \) represents the stiffness matrix for the standard tensor-product B-spline space on the patch \(\Omega^S \), and \(K^S_0 \) is the contribution to the stiffness matrix for the \(W \) space from the same patch. Obviously, the same can be done at the element level, by restricting the matrices to suitable submatrices using the indices of non-vanishing functions on the element.

To implement the hierarchical \(C^1 \) splines we construct the same structures and algorithms detailed in [15]. First, it is necessary to complete the space structure of one single level, that we have just described, with some functionality to compute the support of a given basis function, as explained in [15, Section 5.1]. Second, the hierarchical structures are constructed following the description in the same paper, except that for the evaluation of basis functions, and in particular for matrix assembly, we make use of the refinement masks in
Section 3.4. The refinement masks give us the two-level relation required by the algorithms in [15], and in particular the matrix $C^{ℓ+1}$ of that paper, that is used both during matrix assembly and to compute the refinement matrix after enlargement of the subdomains.

4.2 Numerical examples

In this section we show several tests where we employed the hierarchical C^1 space to solve PDEs by isogeometric methods. We consider two different kinds of numerical examples: the first three tests are run for Poisson problems with an automatic adaptive scheme, while in the last numerical test we solve the bilaplacian problem, with a pre-defined refinement scheme.

4.2.1 Poisson problem

The first three examples are tests on the Poisson equation

$$\begin{cases} -Δu = f & \text{in } Ω, \\ u = g & \text{on } ∂Ω. \end{cases}$$

The goal is to show that using the C^1 space basis does not spoil the properties of the local refinement. The employed isogeometric algorithm is based on the adaptive loop (see, e.g., [6])

\[
\text{SOLVE} \rightarrow \text{ESTIMATE} \rightarrow \text{MARK} \rightarrow \text{REFINE}. \]

In particular, for the examples we solve the variational formulation of the problem imposing the Dirichlet boundary condition by Nitsche’s method, and the problem is to find $u ∈ \mathcal{W}_H$ such that

$$\int_Ω \nabla u \cdot \nabla v - \int_{Γ_D} \frac{∂u}{∂n} v - \int_{Γ_N} \frac{∂v}{∂n} u = \int_Ω f v - \int_{Γ_D} g v \quad \forall v ∈ \mathcal{W}_H,$$

where h is the local element size, and the penalization parameter is chosen as $γ = 10(p + 1)$, with p the degree. The error estimate is computed with a residual-based estimator, and the marking of the elements at each iteration is done using Dörfler’s strategy (when not stated otherwise, we set the marking parameter equal to 0.75). The refinement step of the loop dyadically refines all the marked elements. Although optimal convergence can be only proved if we refine using a refinement strategy that guarantees that meshes are admissible [7], previous numerical results show also a good behavior of non-admissible meshes [6].

For each of the three examples we report the results for degrees $p = (3, 3), (4, 4)$, with C^1 smoothness across the interface, and with a regularity r equal to degree minus two within the single patches. We compare the results for the adaptive scheme with those obtained by refining uniformly, and also with the ones obtained by employing the same adaptive scheme for hierarchical spaces with C^0 continuity across the interface, while the same regularity within the patches as above is kept.
Example 1 For the first numerical example we consider the classical L-shaped domain $[-1, 1]^2 \setminus (0, 1) \times (-1, 0)$ defined by two patches as depicted in Figure 2(a), and the right-hand side f and the boundary condition g are chosen such that the exact solution is given by

$$u(\rho, \theta) = \rho^{\frac{2}{3}} \sin\left(\frac{4}{3} \theta\right),$$

with ρ and θ the polar coordinates. As it is well known, the exact solution has a singularity at the reentrant corner. We start the adaptive simulation with a coarse mesh of 4×4 elements on each patch, and we use Dörfler’s parameter equal to 0.90 for the marking of the elements. The convergence results are presented in Figure 3. It can be seen that the error in H^1 semi-norm and the estimator converge with the expected rate, in terms of the degrees of freedom, both for the C^1 and the C^0 discretization, and that this convergence rate is better than the one obtained with uniform refinement. Moreover, the error for the C^1 discretization is slightly lower than the one for the C^0 discretization, although they are very similar. This is in good agreement with what has been traditionally observed for isogeometric methods: the accuracy per degree of freedom is better for higher continuity. In this case, since the continuity only changes near the interface, the difference is very small.

We also show in Figure 4 the final meshes obtained with the different discretizations. It is clear that the adaptive method correctly refines the mesh in the vicinity of the reentrant corner, where the singularity occurs, and the refinement gets more local with higher degree.

Example 2 In the second example the data of the problem are chosen in such a way that the exact solution is

$$u(x, y) = (-120x + x^2 - 96y - 8xy + 16y^2)^{12/5} \cos(\pi y/20),$$

defined on the domain shown in Figure 2(b). The geometry of the domain is given by two bicubic Bézier patches, and the control points are chosen following the algorithm in [28], in such a way that the geometry is given by an analysis-suitable G^1 parametrization, see Appendix B for details. Note that we have chosen the solution such that it has a singularity along the interface. In this example we start the adaptive simulation with a coarse mesh of
Isogeometric analysis with C^1 hierarchical functions on planar two-patch geometries

8 \times 8 elements on each patch. We present the convergence results in Figure 5. As before, both the (relative) error and the estimator converge with optimal rate, and both for the C^0 and the C^1 discretizations, with slightly better result for the C^1 spaces. We note that, since the singularity occurs along a line, optimal order of convergence for higher degrees cannot be obtained without anisotropic refinement, as it was observed in the numerical examples in [13, Section 4.6].

We also present in Figure 6 the finest meshes obtained with the different discretizations, and it can be observed that the adaptive method correctly refines near the interface, where the singularity occurs.

Example 3 We consider the same domain as in the previous example, and the right-hand side and the boundary condition are chosen in such a way that the exact solution is given by

$$u(x, y) = (y - 1.7)^{12/5} \cos(x/4).$$

In this case the solution has a singularity along the line $y = 1.7$, that crosses the interface and is not aligned with the mesh.

The convergence results, that are presented in Figure 7, are very similar to the ones of the previous example, and show optimal convergence rates for both the C^1 and the C^0 discretizations. As before, we also present in Figure 8 the finest meshes obtained with the different discretizations. It is evident that the adaptive algorithm successfully refines along the singularity line.

4.2.2 Bilaplacian problem

In the last example we consider the solution of the bilaplacian problem, given in strong form by

$$\begin{cases}
\Delta^2 u = f & \text{in } \Omega, \\
u = g_1 & \text{on } \partial \Omega, \\
\frac{\partial u}{\partial n} = g_2 & \text{on } \partial \Omega.
\end{cases}$$
(a) $p = (3, 3)$, C^0 functions on the interface: NDOF=1648.
(b) $p = (3, 3)$, C^1 functions on the interface: NDOF=1623.
(c) $p = (4, 4)$, C^0 functions on the interface: NDOF=833.
(d) $p = (4, 4)$, C^1 functions on the interface: NDOF=833.

Fig. 4 Hierarchical meshes for Example 1, with $p = (3, 3)$ and $p = (4, 4)$. Apparently the meshes are the same for the C^0 and C^1 case, but there are some differences in the finest levels.

It is well known that the weak formulation of the problem in direct form requires the trial and test functions to be in $H^2(\Omega)$. For the discretization with a Galerkin method, this can be obtained if the discrete basis functions are C^1. The solution of the problem with C^0 basis functions, instead, requires to use a mixed variational formulation or some sort of weak enforcement of the C^1 continuity across the interface, like with a Nitsche method.

Example 4 For the last numerical test we solve the bilaplacian problem in the L-shaped domain as depicted in Figure 2(a). The right-hand side and the boundary conditions are chosen in such a way that the exact solution is given, in polar coordinates (ρ, θ), by

$$u(\rho, \theta) = \rho^{2+1}(C_1 F_1(\theta) - C_2 F_2(\theta)),$$
where value in the exponent is chosen equal to $z = 0.544483736782464$, which is the smallest positive solution of
\[\sin(z\omega) + z\sin(\omega) = 0, \]
with $\omega = 3\pi/2$ for the L-shaped domain, see [20, Section 3.4]. The other terms are given by
\[
\begin{align*}
C_1 &= \frac{1}{z-1} \sin \left(\frac{3(z-1)\pi}{2} \right) - \frac{1}{z+1} \sin \left(\frac{3(z+1)\pi}{2} \right), \\
C_2 &= \cos \left(\frac{3(z-1)\pi}{2} \right) - \cos \left(\frac{3(z+1)\pi}{2} \right), \\
F_1(\theta) &= \cos((z-1)\theta) - \cos((z+1)\theta), \\
F_2(\theta) &= \frac{1}{z-1} \sin((z-1)\theta) - \frac{1}{z+1} \sin((z+1)\theta).
\end{align*}
\]

The exact solution has a singularity at the reentrant corner, and it is the same kind of singularity that one would encounter for the Stokes problem.

For our numerical test we start with a coarse mesh of 8×8 elements on each patch. In this case, instead of refining the mesh with an adaptive algorithm we decided to refine following a pre-defined strategy: at each refinement step, a region surrounding the reentrant corner, and composed of 4×4 elements of the finest level, is marked for refinement, see Figure 9(a). We remark that the implementation of the adaptive algorithm with a residual-based estimator would require computing fourth order derivatives at the quadrature points, and several jump terms across the interface, that is beyond the scope of the present work.

In Figure 9(b) we show the error obtained in H^2 semi-norm when computing with C^1 hierarchical splines of degrees 3 and 4 and regularity r equal to degree minus two within the single patches, for the local refinement described above, and with C^1 isogeometric splines of the same degree and inner regularity r with global uniform refinement. It is obvious that the hierarchical spaces perform much better, as we obtain a lower error with many less degrees of freedom. In this case we do not see a big difference between the results obtained
for degrees 3 and 4, but this is caused by the fact that we are refining by hand, and the asymptotic regime has not been reached yet.

5 Conclusions

We presented the construction of C^1 hierarchical functions on two-patch geometries and their application in isogeometric analysis. After briefly reviewing the characterization of C^1 tensor-product isogeometric spaces, we investigated the properties needed to effectively use these spaces as background machinery for the hierarchical spline model. In particular, the local linear independence of the one-level basis functions was proved together with the nested nature of the considered spline spaces. The numerical examples show that optimal convergence rates are obtained by the local refinement scheme for second and fourth order problems, even in presence of singular solutions. In future work we plan to generalize the construction to the multi-patch domain setting of [29].
It remains to prove the refinement relation (18) for the functions \(\phi_{I_1}^{(S)} \), which can be done similarly as for the functions \(\phi_{I_1}^{(S)} \). Considering the corresponding spline functions \(\widetilde{\phi}_{I_1}^{(S),f} \), \(S \in \{L, R\} \), we get, on the one hand, by using relations (11) and (17)

\[
\widetilde{\phi}_{I_1}^{(S),f}(\xi_1, \xi_2) = \begin{bmatrix} 0 & \mathcal{B}^{S,f} \end{bmatrix} \begin{bmatrix} N_{L}^{(S)}(\xi_1, \xi_2) N_{L}^{(S)}(\xi_1, \xi_2) \end{bmatrix}^T
\]

\[
= \begin{bmatrix} 0 & \mathcal{B}^{S,f} \end{bmatrix} \begin{bmatrix} \theta_{11}^{(S)} & \theta_{12}^{(S)} & \theta_{21}^{(S)} & \theta_{22}^{(S)} \end{bmatrix} \begin{bmatrix} N_{L}^{(S)}(\xi_1, \xi_2) N_{L}^{(S)}(\xi_1, \xi_2) \end{bmatrix}
\]

\[
= \mathcal{B}^{S,f} \theta_{11}^{(S)} N_{L}^{(S)}(\xi_1, \xi_2) + \mathcal{B}^{S,f} \theta_{22}^{(S)} N_{L}^{(S)}(\xi_1, \xi_2). \tag{21}
\]

On the other hand, the functions \(\phi_{I_1}^{(S),f} \) can be expressed as

\[
\phi_{I_1}^{(S),f}(\xi_1, \xi_2) = \alpha^{(S)}(\xi_2) \left[N_{L,p}^{(S)}(\xi_2) \right]_{\alpha I} N_{L,p}^{(S)}(\xi_1),
\]

and after refining the B-spline functions \(N_{L,p}^{(S)}(\xi_1) \) and \(N_{L,p}^{(S)}(\xi_2) \), \(i \in I' \) we obtain that this is equal to

\[
\phi_{I_1}^{(S),f}(\xi_1, \xi_2) = \alpha^{(S)}(\xi_2) A_{p-1}^{(S)} \left[N_{L,p}^{(S)}(\xi_2) \right]_{\alpha I} \sum_{j \in I'} A_{j}^{(S)} N_{L,p}^{(S)}(\xi_1). \]
where \(\lambda_{\ell+1}^{r+1} \) are again the entries of the refinement matrix \(\Lambda^{r+1}_p \). Recalling that \(\lambda_{\ell+1}^{r+1} = 0 \) and \(\lambda_{\ell+1}^{r+1} = \frac{1}{2} \), we get

\[
\tilde{\phi}_{\ell_1, \ell_2}^{(S), f} = \alpha^{(S)}(\xi_2) \Lambda^{r+1}_p \left[N_{\ell_2, p-1}^{r+1}(\xi_2) \right] |_{\ell_1} + \frac{1}{2} N_{\ell_2, p}^{r+1}(\xi_1) + \sum_{j \in \Gamma^{(1)}[0,1]} \Lambda_{\ell_1}^{r+1} N_{\ell_2, p}^{r+1}(\xi_1)
\]

\[
= \frac{1}{2} \Lambda^{r+1}_p \left[N_{\ell_2, p-1}^{r+1}(\xi_2) \right] |_{\ell_1} + \sum_{j \in \Gamma^{(1)}[0,1]} \Lambda_{\ell_1}^{r+1} N_{\ell_2, p}^{r+1}(\xi_1). \quad (22)
\]

Considering the two equal value terms (21) and (22), one can argue as for the case of the functions \(\phi_{\ell_1}^{(S)} \), that both first terms and both second terms each must coincide. This implies

\[
\tilde{\phi}_{\ell_1, \ell_2}^{(S), f} = \frac{1}{2} \Lambda^{r+1}_p \phi_{\ell_1}^{(S), f} \left(\xi_1, \xi_2 \right) + \bar{T}^{(S)} \phi_{\ell_2}^{(S), f} N_2^{r+1}(\xi_1, \xi_2),
\]

which finally shows the refinement relation for the functions \(\phi_{\ell_1}^{f} \).
Isogeometric analysis with C^1 hierarchical functions on planar two-patch geometries

(a) Refinement of the L-shaped domain

(b) Error in H^2 semi-norm

Fig. 9 Hierarchical mesh (a) and comparison of the results obtained by local refinement and C^1 space with global refinement (b) on Example 4.

B Geometry of the curved domain

The geometry in Fig.2(a) for the examples in Section 4.2 is generated by following the algorithm in [28]. This technique is based on solving a quadratic minimization problem with linear side constraints, and constructs from an initial multi-patch geometry \tilde{F} an analysis-suitable G^1 multi-patch parameterization Γ possessing the same boundary, vertices and first derivatives at the vertices as \tilde{F}.

In our case, the initial geometry \tilde{F} is given by the two patch parameterization consisting of two quadratic Bézier patches \tilde{F}^L and \tilde{F}^R (i.e. without any internal knots) with the control points $\tilde{c}_{i,j}^{(S)}$, $S \in \{L, R\}$, specified in Table 1. This parameterization is not analysis-suitable G^1.

Applying the algorithm in [28] (by using Mathematica), we construct an analysis-suitable G^1 two-patch geometry Γ with bicubic Bézier patches Γ^L and Γ^R. Their control points $c_{i,j}^{\delta(S)}$, $S \in \{L, R\}$, are given in Table 2, where for presenting some of their coordinates the notations $D = 99170$ and

\[
\begin{align*}
C_1 &= 333939/D, & C_2 &= 47387036/(22.5D), \\
C_3 &= -15800567/(5D), & C_4 &= 242128576/(67.5D), \\
C_5 &= 57452423/(45D), & C_6 &= 81952942/(22.5D),
\end{align*}
\]

are used.

\begin{table}[h]
\centering
\begin{tabular}{cccc}
 $c_{i,j}^{(L)}$ & $c_{i,j}^{(R)}$ \\
 \hline
 (0,0) & (0,0) \\
 (-2.5/2) & (-2.5/2) \\
 (-3.17/3) & (-7,8) \\
 (0,6) & (0,6) \\
 (-13/4,53/20) & (39/20, 3) \\
 (-6,-2) & (411/3) \\
\end{tabular}
\caption{Control points $c_{i,j}^{\delta(S)}$, $S \in \{L, R\}$, of the initial non-analysis-suitable G^1 two-patch parameterization \tilde{F}.}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{cccc}
 $c_{i,j}^{(L)}$ & $c_{i,j}^{(R)}$ \\
 \hline
 (0,0) & (0,0) \\
 (-2.5/2) & (-2.5/2) \\
 (-3.17/3) & (-7,8) \\
 (0,6) & (0,6) \\
 (-13/4,53/20) & (39/20, 3) \\
 (-6,-2) & (411/3) \\
\end{tabular}
\caption{Control points $c_{i,j}^{\delta(S)}$, $S \in \{L, R\}$, of the initial non-analysis-suitable G^1 two-patch parameterization \tilde{F}.}
\end{table}
Table 2 Control points $e^S_{i,j}$, $S \in \{L, R\}$, of the resulting analysis-suitable G^1 two-patch parameterization F.

References

1. Auricchio, F., Beirão da Veiga, L., Buffa, A., Lovadina, C., Reali, A., Sangalli, G.: A fully "locking-
3. Benson, D.J., Bazilevs, Y., Hsu, M.C., Hughes, T.J.R.: A large deformation, rotation-free, isogeometric
Notes of the Unione Matematica Italiana, Springer (2017)
5. Blidia, A., Mourrain, B., Villamizar, N.: G^1-smooth splines on quad meshes with 4-split macro-patch
10. Collin, A., Sangalli, G., Takacs, T.: Analysis-suitable G^1 multi-patch parametrizations for C^1 isogeome-
nische Universität Wien (2017)
15. Garau, E., Vázquez, R.: Algorithms for the implementation of adaptive isogeometric methods using
18. Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn–Hilliard phase-
20. Grisvard, P.: Singularities in boundary value problems, Recherche en Mathématiques Appliquées [Re-
List of symbols

Spline space

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Spline degree, $p \geq 3$</td>
</tr>
<tr>
<td>r</td>
<td>Spline regularity, $1 \leq r \leq p - 2$</td>
</tr>
<tr>
<td>\mathcal{S}_p</td>
<td>Open knot vector</td>
</tr>
<tr>
<td>τ_i</td>
<td>Internal breakpoints of knot vector \mathcal{S}_p^r</td>
</tr>
<tr>
<td>\mathcal{T}</td>
<td>Ordered set of internal breakpoints τ_i</td>
</tr>
<tr>
<td>k</td>
<td>Number of different internal breakpoints of knot vector \mathcal{S}_p^r</td>
</tr>
<tr>
<td>\mathcal{S}_p^r, \mathcal{S}_p^{r+1}, \mathcal{S}_p^{r-1}</td>
<td>Univariate spline space of degree p and regularity r on $[0, 1]$ over knot vector \mathcal{S}_p^r</td>
</tr>
<tr>
<td>\mathcal{S}_p^r, \mathcal{S}_p^{r+1}, \mathcal{S}_p^{r-1}</td>
<td>B-splines of spline spaces \mathcal{S}_p^r, \mathcal{S}_p^{r+1} and \mathcal{S}_p^{r-1}, respectively</td>
</tr>
<tr>
<td>n, m, n_1</td>
<td>Dimensions of spline spaces \mathcal{S}_p^r, \mathcal{S}_p^{r+1} and \mathcal{S}_p^{r-1}, respectively</td>
</tr>
<tr>
<td>\mathcal{I}, \mathcal{I}_0, \mathcal{I}_1</td>
<td>Index sets of B-splines \mathcal{N}_p^r, \mathcal{N}_p^{r+1} and \mathcal{N}_p^{r-1}, respectively</td>
</tr>
<tr>
<td>$\mathcal{J}{0,j}, \mathcal{J}{1,j}$</td>
<td>Index subsets of \mathcal{I} related to B-splines \mathcal{N}_p^r and \mathcal{N}_p^{r-1}, for $i \in \mathcal{I}_0$ and $i \in \mathcal{I}_1$, respectively</td>
</tr>
<tr>
<td>$\hat{\zeta}_m$</td>
<td>Greville abscissae of spline space \mathcal{S}_p^r, $m \in \mathcal{I}$</td>
</tr>
<tr>
<td>\mathbf{N}_0, \mathbf{N}_1, \mathbf{N}_2</td>
<td>Vectors of tensor-product B-splines \mathcal{N}_p^r and \mathcal{N}_p^{r-1}</td>
</tr>
</tbody>
</table>

Geometry

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>Upper index referring to specific patch, $S \in {L, R}$</td>
</tr>
<tr>
<td>$\mathcal{L}^{(S)}$</td>
<td>Quadrilateral patch</td>
</tr>
<tr>
<td>Ω</td>
<td>Two-patch domain $\Omega = \Omega^{(L)} \cup \Omega^{(R)}$</td>
</tr>
<tr>
<td>\mathcal{F}</td>
<td>Common interface of two-patch domain Ω</td>
</tr>
<tr>
<td>$\mathcal{F}^{(S)}$</td>
<td>Geometry mapping of patch $\Omega^{(S)}$</td>
</tr>
<tr>
<td>\mathcal{F}</td>
<td>Two-patch geometry $\mathcal{F} = (\mathcal{F}^{(L)}, \mathcal{F}^{(R)})$</td>
</tr>
<tr>
<td>ξ_1, ξ_2</td>
<td>Parameter directions of geometry mappings</td>
</tr>
<tr>
<td>η_0, η_1</td>
<td>Spline control points of geometry mapping $\mathcal{F}^{(S)}$</td>
</tr>
<tr>
<td>$\alpha^{(S)}, \beta^{(S)}, \gamma$</td>
<td>Gluing functions of two-patch geometry \mathcal{F}</td>
</tr>
<tr>
<td>γ</td>
<td>Scalar function, $\gamma \neq 0$</td>
</tr>
</tbody>
</table>

C^1 isogeometric space

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{V}</td>
<td>Space of C^1 isogeometric spline functions on Ω</td>
</tr>
<tr>
<td>\mathcal{W}</td>
<td>Subspace of \mathcal{V}</td>
</tr>
<tr>
<td>\mathcal{F}</td>
<td>Basis of \mathcal{W}</td>
</tr>
<tr>
<td>$\phi_{\mathcal{F}^{(S)}, \mathcal{F}^{(S)}}, \phi_{\mathcal{F}^{(S)}, \mathcal{F}^{(S)}}$</td>
<td>Parts of basis \mathcal{F}, $\phi = \phi_{\mathcal{F}^{(L)}} \cup \phi_{\mathcal{F}^{(R)}}$, $\phi_{\mathcal{F}^{(L)}} \cup \phi_{\mathcal{F}^{(R)}}$</td>
</tr>
<tr>
<td>$\phi_{\mathcal{F}^{(S)}, \mathcal{F}^{(S)}}$</td>
<td>Basis functions of $\phi_{\mathcal{F}^{(S)}}$, $i \in \mathcal{I} \setminus {0, 1}, j \in \mathcal{I}$</td>
</tr>
<tr>
<td>$\phi_{\mathcal{F}^{(S)}, \mathcal{F}^{(S)}}$</td>
<td>Basis functions of $\phi_{\mathcal{F}^{(S)}}$, $i \in \mathcal{I}_0$</td>
</tr>
<tr>
<td>$\phi_{\mathcal{F}^{(S)}, \mathcal{F}^{(S)}}$</td>
<td>Basis functions of $\phi_{\mathcal{F}^{(S)}}$, $i \in \mathcal{I}_1$</td>
</tr>
<tr>
<td>$\tilde{\mathcal{F}}^{(S)}, \tilde{\mathcal{F}}^{(S)}$</td>
<td>Vectors of spline functions $\phi_{\mathcal{F}^{(S)}} \circ \mathcal{F}^{(S)}$, $\phi_{\mathcal{F}^{(S)}} \circ \mathcal{F}^{(S)}$ and $\phi_{\mathcal{F}^{(S)}} \circ \mathcal{F}^{(S)}$, respectively</td>
</tr>
<tr>
<td>$\mathbf{B}, \mathbf{B}^{(S)}$</td>
<td>Transformation matrices</td>
</tr>
<tr>
<td>$\mathbf{B}_L^{(S)}, \mathbf{B}_R^{(S)}$</td>
<td>Entries of matrices $\mathbf{B}, \mathbf{B}^{(S)}$ and $\mathbf{B}^{(S)}$, respectively</td>
</tr>
<tr>
<td>$\mathbf{B}^{(S)}$</td>
<td>Block matrix assembled by the matrices $\mathbf{B}, \mathbf{B}^{(S)}$ and the identity matrix $I_{n_{(n-2)}}$</td>
</tr>
</tbody>
</table>

Hierarchical space

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ</td>
<td>Upper index referring to specific level</td>
</tr>
<tr>
<td>$\mathcal{A}{p}^{\ell+1}$, $\mathcal{A}{p}^{\ell+1}$, $\mathcal{A}_{p}^{\ell+1}$</td>
<td>Refinement matrices for B-splines \mathcal{N}_p^r, \mathcal{N}_p^{r+1} and \mathcal{N}_p^{r-1}, respectively</td>
</tr>
<tr>
<td>$\mathcal{A}_{p}^{\ell+1}$</td>
<td>Entries of refinement matrix $\mathcal{A}_{p}^{\ell+1}$</td>
</tr>
<tr>
<td>$\mathcal{A}_{p}^{\ell+1}$</td>
<td>Block matrices of refinement mask $\mathcal{A}{p}^{\ell+1} \oplus \mathcal{A}{p}^{\ell+1}$, $0 \leq i \leq j \leq 2$</td>
</tr>
<tr>
<td>\mathcal{W}</td>
<td>Basis of \mathcal{W}</td>
</tr>
</tbody>
</table>

Most notations in the paragraphs “Spline space” and “C^1 isogeometric space” can be directly extended to the hierarchical setting by adding the upper index t to refer to the considered level.
Recent publications:

INSTITUTE of MATHEMATICS
MATHICSE Group
Ecole Polytechnique Fédérale (EPFL)
CH-1015 Lausanne

2019

01.2019 ASSYR ABDULLE, DOGHONAY ARJMAND, EDOARDO PAGANONI
Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems

02.2019 CESARE BRACCO, CARLOTTA GIANNELLI, MARIO KAPL, RAFAEL VÁZQUEZ
Isogeometric analysis with C1 hierarchical functions on planar two-patch geometries
