MATHICSE Technical Report: Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations

In this paper we propose a new approach for sampling from probability measures in, possibly, high dimensional spaces. By perturbing the standard overdamped Langevin dynamics by a suitable Stratonovich perturbation that preserves the invariant measure of the original system, we show that accelerated convergence to equilibrium and reduced asymptotic variance can be achieved, leading, thus, to a computationally advantageous sampling algorithm. The new perturbed Langevin dynamics is reversible with respect to the target probability measure and, consequently, does not suffer from the drawbacks of the nonreversible Langevin samplers that were introduced in [C.-R. Hwang, S.-Y. Hwang-Ma, and S.-J. Sheu, Ann. Appl. Probab. 1993] and studied in, e.g. [T. Lelievre, F. Nier, and G. A. Pavliotis J. Stat. Phys., 2013] and [A. B. Duncan, T. Leli`evre, and G. A. Pavliotis J. Stat. Phys., 2016], while retaining all of their advantages in terms of accelerated convergence and reduced asymptotic variance. In particular, the reversibility of the dynamics ensures that there is no oscillatory transient behaviour. The improved performance of the proposed methodology, in comparison to the standard overdamped Langevin dynamics and its nonreversible perturbation, is illustrated on an example of sampling from a two-dimensional warped Gaussian target distribution.


Year:
Mar 07 2019
Publisher:
Écublens, MATHICSE
Laboratories:




 Record created 2019-03-13, last modified 2019-06-19

Fulltext:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)