Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Reverse-engineering the locomotion of a stem amniote
 
research article

Reverse-engineering the locomotion of a stem amniote

Nyakatura, John A.
•
Melo, Kamilo
•
Horvat, Tomislav
Show more
January 16, 2019
Nature

Reconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution. However, estimating the locomotor behaviour of a fossil species remains a challenge because of the limited information preserved and the lack of a direct correspondence between form and function. The evolution of advanced locomotion on land—that is, locomotion that is more erect, balanced and mechanically power-saving than is assumed of anamniote early tetrapods—has previously been linked to the terrestrialization and diversification of amniote lineages. To our knowledge, no reconstructions of the locomotor characteristics of stem amniotes based on multiple quantitative methods have previously been attempted: previous methods have relied on anatomical features alone, ambiguous locomotor information preserved in ichnofossils or unspecific modelling of locomotor dynamics. Here we quantitatively examine plausible gaits of the stem amniote Orobates pabsti, a species that is known from a complete body fossil preserved in association with trackways. We reconstruct likely gaits that match the footprints, and investigate whether Orobates exhibited locomotor characteristics that have previously been linked to the diversification of crown amniotes. Our integrative methodology uses constraints derived from biomechanically relevant metrics, which also apply to extant tetrapods. The framework uses in vivo assessment of locomotor mechanics in four extant species to guide an anatomically informed kinematic simulation of Orobates, as well as dynamic simulations and robotics to filter the parameter space for plausible gaits. The approach was validated using two extant species that have different morphologies, gaits and footprints. Our metrics indicate that Orobates exhibited more advanced locomotion than has previously been assumed for earlier tetrapods, which suggests that advanced terrestrial locomotion preceded the diversification of crown amniotes. We provide an accompanying website for the exploration of the filters that constrain our simulations, which will allow revision of our approach using new data, assumptions or methods.

  • Details
  • Metrics
Type
research article
DOI
10.1038/s41586-018-0851-2
Web of Science ID

WOS:000455781600040

Author(s)
Nyakatura, John A.
Melo, Kamilo
Horvat, Tomislav
Karakasiliotis, Kostas
Allen, Vivian R.
Andikfar, Amir
Andrada, Emanuel
Arnold, Patrick
Lauströer, Jonas
Hutchinson, John R.
Show more
Date Issued

2019-01-16

Published in
Nature
Volume

565

Issue

7739

Start page

351

End page

355

URL

Interactive data visualization

https://go.epfl.ch/orobates
Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
BIOROB  
Available on Infoscience
February 5, 2019
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/154369
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés