Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. MATHICSE Technical Report : Analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters
 
working paper

MATHICSE Technical Report : Analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters

Martin, Matthieu
•
Krumscheid, Sebastian  
•
Nobile, Fabio  
March 9, 2018

We consider the numerical approximation of a risk-averse optimal control problem for an elliptic partial differential equation (PDE) with random coefficients. Specifically, the control function is a deterministic, dis- tributed forcing term that minimizes the expected mean squared distance between the state (i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse optimal control problem, we consider a Finite Element discretization of the underlying PDEs, a Monte Carlo sampling method, and gradient type iterations to obtain the approximate optimal control. We provide full error and complexity analysis of the proposed numerical schemes. In particular we compare the complexity of a fixed Monte Carlo gradient method, in which the Finite Element discretization and Monte Carlo sample are chosen initially and kept fixed over the gradient iterations, with a Stochastic Gradient method in which the expectation in the computation of the steepest descent direction is approximated by independent Monte Carlo estimators with small sample sizes and possibly varying Finite Element mesh sizes across iterations. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by our numerical experiments.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Version2.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

1.63 MB

Format

Adobe PDF

Checksum (MD5)

5622bde890fbbd80750bb29884bebdd8

Loading...
Thumbnail Image
Name

Report-04.2018_MM_SK_FN.pdf

Access type

openaccess

Size

1.54 MB

Format

Adobe PDF

Checksum (MD5)

4d2e7d45546ec18739a69436b2b15d15

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés