MATHICSE Technical Report : Multilevel ensemble Kalman filtering for spatio-temporal processes

This work concerns state-space models, in which the state-space is an infinite-dimensional spatial field, and the evolution is in continuous time, hence requiring approximation in space and time. The multilevel Monte Carlo (MLMC) sampling strategy is leveraged in the Monte Carlo step of the ensemble Kalman filter (EnKF), thereby yielding a multilevel ensemble Kalman filter (MLEnKF) for spatio-temporal models, which has provably superior as- ymptotic error/cost ratio. A practically relevant stochastic partial differential equation (SPDE) example is presented, and numerical experiments with this example support our theoretical findings.


Year:
Oct 20 2017
Publisher:
Écublens, MATHICSE
Keywords:
Note:
MATHICSE Technical Report Nr. 22.2017 October 2017
Related to:
Laboratories:




 Record created 2019-01-25, last modified 2019-06-26

Fulltext:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)