Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. MATHICSE Technical Report : Multilevel Monte Carlo approximation of functions
 
working paper

MATHICSE Technical Report : Multilevel Monte Carlo approximation of functions

Krumscheid, Sebastian  
•
Nobile, Fabio  
April 10, 2017

Many applications across sciences and technologies require a careful quantification of non-deterministic effects to a system output, for example when evaluating the system's reliability or when gearing it towards more robust operation conditions. At the heart of these considerations lies an accurate characterization of uncertain system outputs. In this work we introduce and analyze novel multilevel Monte Carlo techniques for an efficient characterization of an uncertain system output's distribution. These techniques rely on accurately approximating general parametric expectations, i.e. expectations that depend on a parameter, uniformly on an interval. Applications of interest include, for example, the approximation of the characteristic function and of the cumulative distribution function of an uncertain system output. A further important consequence of the introduced approximation techniques for parametric expectations (i.e. for functions) is that they allow to construct multilevel Monte Carlo estimators for various robustness indicators, such as for a quantile (also known as value-at-risk) and for the conditional value-at-risk. These robustness indicators cannot be expressed as moments and are thus not easily accessible usually. In fact, here we provide a framework that allows to simultaneously estimate a cumulative distribution function, a quantile, and the associated conditional value-at-risk of an uncertain system output at the cost of a single multilevel Monte Carlo simulation, while each estimated quantity satisfies a prescribed tolerance goal.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Report-12.2017_SK-FN2_new.pdf

Access type

openaccess

Size

1.2 MB

Format

Adobe PDF

Checksum (MD5)

8aa700d2a940a3d24618acfb0875cc30

Loading...
Thumbnail Image
Name

Report-12_2017_SK-FN.pdf

Access type

openaccess

Size

908.3 KB

Format

Adobe PDF

Checksum (MD5)

1c9d171b41d1c7b19dce1ff6119cb22a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés