Neural Circuits for Goal-Directed Sensorimotor Transformations

Precisely wired neuronal circuits process sensory information in a learning- and context-dependent manner in order to govern behavior. Simple sensory decision-making tasks in rodents are now beginning to reveal the contributions of distinct cell types and brain regions participating in the conversion of sensory information into learned goal-directed motor output. Task learning is accompanied by target specific routing of sensory information to specific downstream cortical regions, with higher-order cortical regions such as the posterior parietal cortex, medial prefrontal cortex, and hippocampus appearing to play important roles in learning- and context-dependent processing of sensory input. An important challenge for future research is to connect cell-type-specific activity in these brain regions with motor neurons responsible for action initiation.


Published in:
Trends In Neurosciences, 42, 1, 66-77
Year:
Jan 01 2019
Publisher:
London, ELSEVIER SCIENCE LONDON
ISSN:
0166-2236
1878-108X
Keywords:
Laboratories:




 Record created 2019-01-23, last modified 2019-06-19


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)