Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamic modal analysis during reduced scale model tests of hydraulic turbines for hydro-acoustic characterization of cavitation flows
 
research article

Dynamic modal analysis during reduced scale model tests of hydraulic turbines for hydro-acoustic characterization of cavitation flows

Favrel, Arthur
•
Gomes Pereira Junior, Joao  
•
Landry, Christian
Show more
February 15, 2019
Mechanical Systems And Signal Processing

Francis turbines operating at off-design conditions experience the development of unfavourable cavitation flows in the draft tube at the runner outlet, which induce pressure pulsations and hydro-acoustic resonances in the worst cases. The assessment of hydropower plant units at off-design conditions is possible by means of one-dimensional numerical simulation, which however requires a proper modelling of the draft tube cavitation flow. The corresponding hydro-acoustic parameters can be identified for a wide number of operating points on the reduced scale model of the machine by modal analysis of the hydraulic test rig. This identification approach is efficient but can however be time-consuming for an industrial project. The paper aims at proposing and validating a faster procedure to identify the eigenfrequencies and the corresponding eigenmodes of a hydraulic test rig featuring a reduced scale model of a Francis turbine operating in off-design conditions. The test rig is excited by injecting a periodical discharge with a rotating valve whose frequency linearly increases from 0 to 7 Hz. Based on the response of the test rig, measured by pressure sensors placed along the pipes, the eigenfrequencies and the corresponding eigenmodes are identified for several operating conditions. The hydro-acoustic parameters are then identified by using a one-dimensional numerical model of the test rig. The results are in very good agreement with those obtained with the standard procedure, i.e. with a stepwise increase of the excitation frequency. This new approach represents an important gain of time and might be applied to assess hydropower plant stability in an industrial context. (C) 2018 Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.ymssp.2018.07.053
Web of Science ID

WOS:000447480400006

Author(s)
Favrel, Arthur
Gomes Pereira Junior, Joao  
Landry, Christian
Mueller, Andres
Yamaishi, Kazuhiko
Avellan, Francois
Date Issued

2019-02-15

Published in
Mechanical Systems And Signal Processing
Volume

117

Start page

81

End page

96

Subjects

Engineering, Mechanical

•

Engineering

•

francis turbine

•

cavitation flow

•

modal analysis

•

dynamic excitation

•

one-dimensional modelling

•

francis turbines

•

full load

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMH  
Available on Infoscience
January 23, 2019
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/153918
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés