Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. FPGA-SPICE: A Simulation-Based Architecture Evaluation Framework for FPGAs
 
research article

FPGA-SPICE: A Simulation-Based Architecture Evaluation Framework for FPGAs

Tang, Xifan  
•
Giacomin, Edouard
•
De Micheli, Giovanni
Show more
December 14, 2018
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

In this paper, we developed a simulation-based architecture evaluation framework for field-programmable gate arrays (FPGAs), called FPGA-SPICE, which enables automatic layout-level estimation and electrical simulations of FPGA architectures. FPGA-SPICE can automatically generate Verilog and SPICE netlists based on realistic FPGA configurations and a high-level eTtensible Markup Language-based FPGA architectural description language. The outputted Verilog netlists can be used to generate layouts of full FPGA fabrics through a semicustom design flow. SPICE simulation decks can be generated at three levels of complexity, namely, full-chip-level, grid-level, and component-level, providing different tradeoff between accuracy and simulation time. In order to enable such level of analysis, we presented two SPICE netlist partitioning techniques: loads extraction and parasitic net activity estimation. Electrical simulations showed that averaged over the selected benchmarks, the grid-/component-level approach can achieve 6.1x/7.5x execution speed-up with 9.9%/8.3% accuracy loss, respectively, compared to the full-chip level simulation. FPGA-SPICE was showcased through three different case studies: 1) an area breakdown analysis for static random access memory-based FPGAs, showing that configuration memories are a dominant factor; 2) a power breakdown comparison to analytical models, analyzing the source of accuracy loss; and 3) a robustness evaluation against process corners, studying their impact on energy consumption of full FPGA fabrics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FPGA-SPICE....pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

3.75 MB

Format

Adobe PDF

Checksum (MD5)

cfe4fecce2177dcbb6afec4cb2eb56f7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés